Roll No.

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 1

Sem AY: Odd Sem 2019-20

Course Code: MEC 325

Course Name: ENGINEERING DYNAMICS

Program & Sem: B.Tech. & V DE

Instructions:

(i) Use of non-programmable scientific calculators is allowed.

Part A [Memory Recall Questions]

Answer all the Question. Each Question carries two marks. (6Qx2M=12M)

1. A body of negligible mass is called as _____

(a) Rigid body (b) Particle (c) System of particles (d) Resistant body

2. If **P** is the resultant force acting on the body, **m** is the mass of the body and **a** is the acceleration of the body, then according to Newton's second law of motion,

(a) P + m.a = 0 (b) $P \times m.a = 0$ (c) P/m.a = 0 (d) P = m.a

3. The equation of motion $v^2 = u^2 + 2.a.s$ is valid in case of

- (a) Variable acceleration (b) Constant acceleration
- (b) Zero acceleration (d) None of these.
- 4. The velocity vector of a missile travelling through air is ______ to its trajectory at all points. (Tangential/Normal)
- 5. The tangential component of acceleration for a particle having curvilinear motion is ______ ($\rho\beta^{\circ\circ}/\rho\beta^{\circ2}$) (where ρ is the radius of curvature of the curvilinear path of motion and β is the angular displacement of the particle along the curvilinear path
- 6. The correct relation among the relations given below is

(a) a.ds = v.dv (b) a.dv = s.ds (c) v.ds = a.dv (d) v.da = s.dv(Q.NO. 1 to 6) (C.O.NO.1) [Knowledge]

Date: 27.09.2019 Time: 2:30PM to 3:30PM Max Marks: 40 Weightage: 20%

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries six marks. (2Qx6M=12M)

7. A projectile is ejected into an experimental fluid at time The initial speed is v_o and the angle to the horizontal is θ . The drag on the projectile results in an acceleration term $a_D = -kv$, where k is a constant and v is the velocity of the projectile. Determine the x-and y components of the velocity. Include the effects of gravitational acceler

8. Work is the dot (scalar) product of Force and Displacement of the body. With the help of this information, derive the expression for work associated with the weight of the body and the gravitational potential energy under constant gravitational acceleration.

(C.O.NO.1)[Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries sixteen marks. (1Qx16M=16M)

9. The sliders A and B are connected by a light rigid bar of length I=0.5m and move with negligible friction in the slots, both of which lie in a horizontal plane. For the position where $x_a=0.4m$, the velocity of A is $v_a=0.9m/s$ to the right. Determine the acceleration of each slider and the force in the bar at this instant.

(C.O.NO.2)[Application]

SCHOOL OF ENGINEERING

Semester: 5th Sem. Course Code: MEC 325 Course Name: EngineeringDynamics Date: 27/09/2019 Time: 2:30 pm - 3:30 pm Max Marks: 40 Weightage: 20%

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels K		type provok farks allotted] [Mark loom's Levels allotte Bloom Leve		oking pe arks tted] om's	Problem Solving type [Marks allotted]		e	Total Marks
					(С		A			
1.	CO1	Module-1 Kinematics of particles and Module-2 Kinetics of particles		12			•				12
2.	CO1	Module-1 Kinetics of Particles				6					6
3.	CO2	Module-2 Kinetics of Particles				6					6
4.	CO3	Module-2 Kinetics of Particles		v		· · · · · · · · · · · · · · · · · · ·			16	The constant	16
	Total Marks			12		1	2		16		40

Extract of question distribution [outcome wise & level wise]

K =Knowledge Level C = Comprehension Level, A = Application Level

.

Note: While setting all types of questions the general guideline is that about 60% Of the questions must be such that even a below average students must be able to attempt. About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Mr. Pramod Pandey]

Reviewers' Comments

·

SCHOOL OF ENGINEERING

SOLUTION

Semester: 5th Sem.

Course Code: MEC 325

Course Name: EngineeringDynamics

Date: 27/09/2019 Time: 2:30 pm - 3:30 pm Max Marks: 40

Weightage: 20%

Part A

$(1Q \times 12M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1.	(1) (b) Particle (2) (d) P = m.a (3) (c) Constant acceleration (4) Tangential (5) $\rho\beta^{\circ}$ (6) (a) a.ds = v.dv	2 marks for each correct answer 12 marks	12 minutes

Part B

 $(2Q \times 6M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
2.		2 marks fòr diagram + 2 marks for	12 minutes

SOZUTZON Let's addeted the Acologicalia formulae or equations + 2 diagnam" of the projectile it is a down marks for correct Rejectle Light Light Light answers Service Academitian Supram of the Birg tile Errom the acceleration diagnam as crow that the accoloration a of the proposite in $\overline{a}(t) = (-kv_1(t))^2 + (-y - kv_1 + b)^2$ $a_x = \frac{dv_x}{dx}$ Age Arg We want the find to and by so we can integrate dur = - Ros and dur - - ? - Roy. detis do this one after another. $\frac{dv_{2}}{\sqrt{2}} = \frac{k}{\sqrt{2}} \frac{dv_{3}}{\sqrt{2}} = \frac{k}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{v_{3}}{\sqrt{2}} \frac{v_{3}}{\sqrt$ of hand alter Bry (to Ba)) on corp $\ln t_{a} = \ln t_{a} \cos \theta = -k(t-\theta),$ $\ln\left(\frac{v_{2}}{v_{0}}\right) = -k\varepsilon,$ CS 64 COLV Let is now find y(t).

.

the have doing 49+ Roy J dog - - - 10 de Urshe + y+ 2 04 $= \underbrace{\underbrace{1}_{p_{1}} = \underbrace{\left(\underbrace{k_{1}\left(\left(q+k_{2}q\right)\right)}_{y_{1}}\right)^{\frac{1}{2}}}_{y_{1},n_{2},n_{2}} = 1}$ 4- [kn (2+ Roy) - knig + hossin ol. 3. In (J+ Roy - Ro g+ Rosson) - Ro 1 mark each 12 minutes for diagrams g+ RUSSIN 3 + 3 marks for $g + k \sigma_{2} = (y + k \sigma_{3} \sin \theta) e^{-Rt}$ $y = \frac{1}{R} (g + R \sigma_{3} \sin \theta) e^{-Rt} - \frac{1}{R} (y + R \sigma_{3} \sin \theta) e^{-Rt}$ derivation ± 1 Mark each for correct expressions -6MASSOCIATED WITH WEIGHT WHEN 9 - CONSTANT WORK This case makes sense when the variation in attitude is "small." $\begin{array}{l} \text{Particle} \quad \text{is:} \\ P_{1,a} = j^2 \ \overrightarrow{F} : d\overrightarrow{n} = \int_{V_1}^{V_2} (-myj) \cdot (dxi + dyj) = \int_{Y_2}^{V_2} my dy \end{array}$ $= -mg \int_{y_1}^{y_2} dy = -mg (y_1) \Big|_{y_1}^{y_2} = -mg (y_2 - y_1). E$ SRAVITATIONAL POTENTION LAUGHT MUCH JELONGTANT 1 the work done by the total of gravitational albeartiers in mostry the product from in the product the approximation of the product the anti-theorem patiential metry is about i l'ost an arrite and To alusaling than data postide form the ground to fit Misticke in yerotal, Va= mylos-he).

. .

Part C

$(Q \times M - Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4.	Securities to the same of relien to the second of the seco	4 marks for F.B.D. + 4 Marks for correct equations used + 4 marks for calculations + 4 marks for correct answers]
	We near with the set of publicity of action to the how stations and the second off in the state for the and from the set of the state of the state has there the second of the state of the state of the house the second second state of the state of the house the second second state of the state of the house the second second state of the state of the house the second second state of the state of the house the second second state of the state of the house the second second second second second of the state of the state of the state of the second second the state of the state of the second		

Change and the second s The configuration of the section to always also. المعينين الم the hospet give in the track of the have defined as the have been and 12 3 - Contraction of the second second いろだらせんかみ デオ いちみやみとしみ さいっかいとうき キタのうちょうう .当小你的话题,今年30日日 > the adata with a million The work of the second second second Equation (6) \mathbb{Z} that "another" caletion that when to be galaxies simulationally with scientisms (1) and (3) for \mathbb{Z}_1 in use \mathbb{Z}_8 . Equations (1) (3) and (3) and (-1) (48,8 - 2) by Equations (1) (3) and (3) and (-1) (48,8 - 2) by State of Age (1) by State of Age (1) by reappoint of the mine plan, then in $\frac{1}{2} = \frac{1}{2} \frac{$ Jamm F. G. and P. -1- - - - - Mar - - - - Mar House (* 1912) (* 1800 - 5) (* 1897 - 41 5) (* 1896) Johan Brand Br Bran - Shits - 1813 (* 1893) (* 1885) (* 157 Bran Mary 1992) (* 1812) a, the force in the light accutility and by the any is the energiance of she the these open, wi, is not a constant of the termination of the second of the generated memorian of 1

	ž
-	
A.C.	
GAIN MORE P	
REACH GREAT	ER HEIGHTS

Roll No.

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST – 2

Sem & AY: Odd Sem 2019-20 Course Code: MEC 325 Course Name: ENGINEERING DYNAMICS Program & Sem: B.Tech. (MEC) & V (DE) Date: 16.11.2019 Time: 2:30 PM to 3:30 PM Max Marks: 40 Weightage: 20%

Instructions:

(i) Use of non-programmable scientific calculators is allowed.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries four marks. (3Qx4M=12M)

1. For a rigid body motion, prove that the relative velocity $v_{A/B} = r\theta^{\circ} e_{\theta}$, where *r* is the distance between points *A* and *B* on the rigid body, e_{θ} is the unit vector in θ direction and θ° is the angular velocity of the rigid body.

(C.O.NO.2) [Knowledge]

2. The radial component of acceleration vector of a rigid body is given by $a_r = \omega x v$, where ω is the angular velocity and v is the velocity vector. If $\omega = 8 rad/s$ in counterclockwise direction and v = -0.54 l - 0.355 j, determine a_r .

(C.O.NO.2) [Knowledge]

3. "All the lines in a rigid body have same angular velocities and angular accelerations." Prove this statement.

(C.O.NO.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries six marks. (2Qx6M=12M)

4. The wheel of radius r = 400 mm rolls to the right without slipping and has a velocity $v_0 = 3.5 \text{ m/s}$ of its center **O**. Calculate the velocity of point **A** on the wheel for the instant represented.

(C.O.NO.2) [Comprehension]

5. Prove that the relative acceleration for a rigid body motion is given by $\mathbf{a}_{A/B} = -\mathbf{r}\theta^{\circ 2} \mathbf{e}_r + \mathbf{r}\theta^{\circ \cdot}\mathbf{e}_{\theta}$, where r is the distance between points A and B, θ° is the angular velocity, $\theta^{\circ \cdot}$ is the angular acceleration, \mathbf{e}_r is the unit vector in radial direction and \mathbf{e}_{θ} is the unit vector in θ direction.

(C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries sixteen marks. (1Qx16M=16M)

6. In the mechanism shown, each of the two wheels has a mass of **30** kg and a centroidal radius of gyration of **100** mm. Each link *OB* has a mass of **10** kg and may be treated as a slender bar. The **7-kg** collar at **B** slides on the fixed vertical shaft with negligible friction. The spring has a stiffness k = 30 kN/m and is contacted by the bottom of the collar when the links reach the horizontal position. If the collar is released from rest at the position $\theta = 45^{\circ}$ and if friction is sufficient to prevent the wheels from slipping, determine the velocity v_B of the collar as it first strikes the spring.

⁽C.O.N.O.3) [Application]

SCHOOL OF ENGINEERING

Semester: 5th Sem.

Course Code: MEC 325

Course Name: EngineeringDynamics

Date: 16/11/2019 Time: 2:30 pm – 3:30 pm Max Marks: 40 Weightage: 20%

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Mai	nory re type 'ks allo om's Lo	otted]	pro [a B	hought ovoking type Marks Ilotted] loom's _evels	S	Problem Solving type [Marks allotted]		Total Marks
									A 		
ų.	CO1	Module-1 Kinematics of particles and Module-2 Kinetics of particles		12							12
2.	CO1	Module-1 Kinetics of Particles					6				6
3.	CO2	Module-2 Kinetics of Particles					6				6
4.	CO3	Module-2 Kinetics of Particles							16	******	16
	Total Marks			12			12		16		40

Extract of question distribution [outcome wise & level wise]

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60% Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

SCHOOL OF ENGINEERING

Semester: 5th Sem.

Course Code: MEC 325

Course Name: EngineeringDynamics

Date: 16/11/2019 Time: 2:30 pm - 3:30 pm Max Marks: 40 Weightage: 20%

	Part A (30	$Q \ge 4M = 12$ Marks)	
Q No	Solution		Max. Time required for each Question
1.	Let's obtain verter relations for the reductive and acceleration of a point in a rigid body rotating about a fixed point in itself. where $-\overline{v}^{P} = \overline{v} \partial_{\overline{v}} \partial_{\overline{v}$	Calculations = 2M Correct answer = 2M	5 min.
2.	The acceleration of A along \hat{e}_0 is given by $\overline{a}_6 = \sqrt{2} \times \overline{\mathcal{H}} = 0$ $\hat{e} = \frac{1}{2}$ = $\hat{i}(0-(8)(-0.355)) - \hat{j}(0-(8)(0.96))$ + \hat{o}_R = $2.84\hat{i} - 4.33\hat{j}$	Procedure = 2M Correct relation = 2M	5 min.

The rotation of a rigid body is described by its angular motion. Figure 5/2 shows a rigid body which is rotating as it undergoes plane motion in the plane of the figure. The angular positions of any two lines 1 and 2 attached to the body are specified by θ_1 and θ_2 measured from any convenient fixed reference direction. Because the angle β is invariant, the relation $\theta_2 = \theta_1 + \beta$ upon differentiation with respect to time gives $\theta_2 = \theta_1$ and $\theta_2 = \theta_1$ or, during a finite interval, $\Delta \theta_2 = \Delta \theta_1$. Thus, all lines on a rigid body in its plane of motion have the same angular displacement, the same angular velocity, and the same angular acceleration.

3.

Part B

$(2Q \times 6M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4.	Solution II (Vector). We will now use Eq. 5.6 and write $\mathbf{v}_A = \mathbf{v}_O = \mathbf{v}_{A,O} = \mathbf{v}_O = \mathbf{\omega} \times \mathbf{r}_0$ where $\mathbf{\omega} = -10\mathbf{k} \text{ rades}$ $\mathbf{r}_0 = 0.2(-1\cos 30^\circ + j\sin 30^\circ) = -0.1732\mathbf{i} = 0.1\mathbf{j} \text{ m}$ $\mathbf{v}_O = 3\mathbf{i} \text{ m/s}$	Calculations = 4M Correct answer = 2M	10 min.
	We now solve the vector equation $\begin{array}{c c} \mathbf{v}_{A} & -3\mathbf{i} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & -10 \\ -0.1732 & 0.1 & 0 \end{vmatrix} = 3\mathbf{i} + 1.732\mathbf{j} = \mathbf{i} \\ = 4\mathbf{i} + 1.732\mathbf{j} \text{ m/s} \qquad \text{Ans.} \\ \text{The magnitude } \epsilon_{A} = \sqrt{4^{2} + (1.732)^{2}} = \sqrt{19} = 4.36 \text{ m/s and direction agree with the previous solution.} \end{array}$		
5.	Lie found the vector relation for velocity $\overline{p}^2 = t\overline{p} \wedge \overline{p} t$ dets give a vector relation for \overline{a} . Then use these velations do some a prime Recar $\overline{\pi}^2 = \pi \hat{e}_{\pi}, \overline{p}^2 = \overline{a} \hat{e}_{\pi} \hat{e}_{\pi}$ where $\pi \hat{p} \hat{e}_{\pi}$ we know $\overline{a} = -\pi \hat{e}_{\pi}, \overline{p}^2 = \overline{a} \hat{e}_{\pi} \hat{e}_{\pi}$ $\widehat{b} \hat{e}_{\pi} = \hat{p} \hat{e}_{\pi} \hat{e}_{\pi}$ where $\pi \hat{e}_{\pi} \hat{e}_{\pi}$ and $\widehat{e}_{\pi} \hat{e}_{\pi} \hat{e}_{\pi}$ $\widehat{b} \hat{e}_{\pi} = \hat{p} \hat{e}_{\pi} \hat{e}_{\pi} \hat{e}_{\pi}$	Diagram = 2M Procedure = 4M	10 min.
	$(20)^{-1}$, $(20$		

Part C

(1Q x 16M = 16 Marks)

		o mano)	
) No	Solution	Scheme of Marking	Max. Time required for each Question
6.	HORK AND ENERGY Plane Kinsties y Rigid Badies- We will use the work-energy relation $T_1 + Y_1 + Y_2 = T_2 + Y_2$ derived higher test 1 for particles and system y porticles. The determination of kinder energy for rigid bodies is performed using the relation $T = 4 - m v_0^2 + 4 - T_1 (s^2)$ Sourisont (a) dat is consider the mation from $9 = 45^\circ$ $Jor = 0^\circ$. Force the matanism etables at rush we have: $T_2 = (mhous)_2 + (Turks)_2 + (Toulder)_2 + ($	F.B.D. = 2 M Calculations = 10 M Correct answers = 4 M	25 min.
	$(\overline{1}_{unts})_{g} = \frac{m^{3}}{4} \pm \frac{m^{3}}{12} \pm \frac{m^{3}}{12} \left(\frac{1}{4} + \frac{1}{12}\right) = m^{3} \left(\frac{3+1}{12}\right)$ $= \frac{m^{3}}{4} \frac{1}{12} + \frac{1}{12} = m^{3} \left(\frac{3+1}{12}\right)$ $= \frac{m^{3}}{3} \frac{1}{2} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$ $\frac{3henefore}{3}, \overline{1}_{2} = 0 \pm \frac{m^{3}}{3} \pm \frac{1}{2} + \frac{1}{12} + $		

-	the second s		
- 1			1
- 1			
- 1			
- i			
- 1			
- 0			1 1
- 1			
- 1			
- 1			
		· · · · · · · · · · · · · · · · · · ·	AND A THE REAL PROPERTY AND AND ADDRESS AND ADDRESS ADDRES

~		Roll No								
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS	PRESIDENCY BENGA		SITY							
	SCHOOL OF E	ENGINEE	RING							
	END TERM FINA		ATION	_					0040	
Semester: Semester: 2019 - 2	20					3 Dec 3-30 4			2019 :30 P	М
Course Code: MEC 325						arks:		J 12	.001	
Course Name: ENGINEERING						tage:		, D		
Program & Sem: B.Tech. (ME										
Instructions: (i) Read all the question (ii) All questions are com (iii) Use of Non-Program	npulsory.		gly.							
	Part A [Memory F	Recall Que	estions]							
Answer all the Questions. E	Each Question ca	rries 5 mar	rks.				(4	Qx5	5M=2	0 M)
1. Fill in the blanks			[5Qx1M	I=5₩	/I] (C	.O.N	o.2)	[Kn	owle	dge]
(a) The product of mass and y	velocity is termed a	as								
(b) When a large force acts of force.	over a small finite	period of ti	me, the	ford	ce is	calle	ed a	s		
(c) In terms of mass m and ra	adius r , Mass mom	ent of inert	ia of a r	ing i	is					
(d) The energy possessed by	a particle by virtue	e of its mot	ion is ca	alled	as_				_	
(e) Work done by weight wi position.	ill be	if the pa	article is	s mo	oved	fron	יסו ר	wer	to u	pper
2. In the Equation of Motion f	or a Spring-Mass-I	Damper sys	stem 3x	;´´+)	x´ + 4	4x = !	5 co	s 2t		
(a) Coefficient of damping for	r the system is			[1N	И] (C	.O.N	o.4)	[Kr	nowle	edge]
(b) Natural frequency of the s	system is			[21	/I] (C	.O.N	o.4)	[Kn	owle	dge]
(c) Amplitude of forced vibrat	tion is			[21	И] (C	.O.N	o.4)	[Kr	nowle	edge]
3. A truck travels 164 m in 8 s	seconds while beir	ng decelera	ated at a	a cor	nstar	it rate	e of	0.5	m/s²	
Determine										
(a) Its initial velocity.				[2]	M] (C	.O.N	o.1)	[Kr	nowle	edge]
						<u> </u>	4	1 12	owle	dge]
(b) Its final velocity.				[21	Л] (C	.O.N	0.1)	Įĸn		9-1

-

 A block of mass m is pulled along a horizontal surface (whose free body diagram is as shown in Fig.1) by applying a force F at an angle θ with the horizontal. The coefficient of dynamic friction between the block and the ground is µ.

If the block travels at a uniform velocity, then determine

(a) The applied force (in terms of μ , \mathbf{m} , $\mathbf{\theta}$).	[3M] (C.O.No.3) [Knowledge]
(b) The work done by the applied force (in terms of μ , m , θ)	[2M] (C.O.No.3) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 8 marks.

5. The pickup truck weighs 1500 kg and reaches a speed of 14 m/s from rest in a distance of 100 m up the 10-percent incline (as shown in Fig.2) with constant acceleration. Calculate the normal force under each pair of wheels and the friction force under the rear driving wheels. The effective coefficient of friction between the tires and the road is known to be at least 0.8.

[8M] (C.O.No.3) [Comprehension]

(4Qx8M=32M)

- 6. Derive Equations of Motion (from Newton's 2nd Law of Motion) for
- (a) Spring-Mass-Damper system.

[4M] (C.O.No.4) [Comprehension]

(b) Simple pendulum.

[4M] (C.O.No.4) [Comprehension]

7. The 8 kg block is moved 0.2 m to the right of the equilibrium position and released from rest at time t=0 (as shown in Fig.3). Determine its displacement at time t=2 s. The viscous damping coefficient *c* is 20 N.s/m and the spring stiffness *k* is 32 N/m.

[8M] (C.O.No.4) [Comprehension]

Fig.3

8. Derive the expression for solution of Equation of Motion (particular integral part only) for [8M] (C.O.No.4) [Comprehension] forced vibration of a spring-mass-damper system.

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries 14 marks.

- 9. Solve the Equation of Motion for a critically damped Spring-Mass-Damper system and draw the Amplitude v/s Time graph for the same system. [14M] (C.O.No.4) [Application]
- 10. Derive the equation of motion for the homogeneous circular cylinder, which rolls without slipping (as shown in Fig.4). If the cylinder mass is 50 kg, the cylinder radius 1 m, the spring constant 75 N/m, and the damping coefficient 20 N.s/m, determine
- (a) The undamped natural frequency
- (b) The damping ratio
- (c) The damped natural frequency
- (d) The period of the damped system.

(e) Amplitude as a function of time if the cylinder is released from rest at the position x=0.2 m [4M] (C.O.No.4) [Application] when t=0.

> 1 272

Fig.4

Page 3 of 3

(2Qx14M=28M)

[2M] (C.O.No.4) [Application]

[2M] (C.O.No.4) [Application]

[3M] (C.O.No.4) [Application]

[3M] (C.O.No.4) [Application]

·

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module	Memory recall type	Thought provoking type	Problem Solving	Total
•	(% age	Number/Unit	[Marks allotted]	[Marks allotted]	type	Marks
	of CO)	/Module Title	Bloom's Levels	Bloom's Levels	[Marks allotted]	
			К	С	A	
1	CO2	Module-2	5			5
2	CO4	Module-4	5			5
3	CO1	Module-1	5			5
4	CO3	Module-3	5			5
5	CO3	Module-3		8		8
6	CO4	Module-4		8		8
7	CO4	Module-4		8		8
8	CO4	Module-4		8		8
9	CO4	Module-4			14	14
10	CO4	Module-4			14	14
	Total Ma	ırks	20	32	28	80

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: 5th Semester: 2019 - 20 Course Code: MEC 325 Course Name: Engineering Dynamics (DE-II) Program & Sem: B.Tech. & 5th Sem. Date: 23rd Dec 2019 Time: 9:30 am to 10:30 am Max Marks: 80 Weightage: 40 %

Part A	
--------	--

 $(4Q \times 5M = 20Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1.	 (a) Linear momentum. (b) Impulsive force. (c) mr² (d) Kinetic energy. (e) Negative. 	Each correct answer for 1 M	5 min.
2.	(a) 1 N.s/m (b) 1.154 rad/s (c) 0.605 m	(a) 1 M (b) 2 M (c) 2 M	5 min.
3.	(a) 22.5 m/s (b) 18.5 m/s (c) 65.25 m	(a) 1.5 M (b) 1.5 M (c) 2 M	5 min.

Part B

(4Q x 8M = 32 Marks)

٠

Q No Solution	Scheme of Marking	Max. Time required for each Question
5. Subtrial matrix $(44=0)$ lef: Subtrial matrix $(44=0)$ lef: Subtrial matrix $(44=0)$ lef: The acceleration of the truck is grined by: The accelerat	4 M Correct answers = 2 M	25 min.

٠

.

Since the Bruch to not metalling, we have $K = \frac{1}{2}$. Therefore, $E_1^{i} M_{G} = I_{cK} = 0 \Rightarrow E_1^{i} M_{G}^{i} = 0$. Then 313514 = 23,838,4 = N $E_1^{i} M_{G} = 0$: $1.5 N_{F} = -1.5 N_{F} + 0.6 F = -0$ $= 7 - 1.5 N_{F} + 1.5 N_{F} = -44,508, --2$ $= 7 - 1.5 N_{F} + 1.5 N_{F} = -44,508, --2$ $= 7,852..63 N_{f}$ $= 7,852..63 N_{f}$ 1.5 Alerty & dian which 1-1-5 14251) -2181.4 = 6348.37 N. 1 $A_F = -1.5$ front coheels 1.51 1 1 **Š**... -Is. 2- Y . 1. a.: " IS THE FRICTION - PARCE "OKAY?" Konguired = 3635.61 = 0.9629 < 0.8 skay! \$2 6. F.B.D. = 2 MTHE SPRING-MASS-DAMPER SYSTEM the apply this -So we know it. "linear" damper - "tinear" spring Calculations = 25 min <u>s</u> aus when y "ground 4 M F(E) Correct $\sim \sim \sim$ answers = 2 Mc, k and m and in the known. mean position FBD Accederation Diogram <u>z(t): ž(t)</u> mean position mean position Stard - St s along \hat{L} $\Xi \overrightarrow{F} = m\overrightarrow{a}$: $F(t) - c\overrightarrow{x}(t) - R \cdot x(t) = m\overrightarrow{x}(t), - \textcircled{O}$ N - mg = 0. - @along ĵ THE SIMPLE PENDULUM 2 the second sec or discent the or discent the or discent the or discent the or th Acceleration Diegnam 10(t) 13(t) 10(t) 13(t) Let is be "cleased" now Let 's write ZF=ma along the two components of acceleration of the mass Instead of doing su along i and j. We have: of doing su along T(t) - mg cos O(t) = m 20²(t), -3 -mq sin $\theta(t) = ml \theta(t) - \Phi$

· · · · · ·

No for each Questio		Part C	(0Q x 0	M = 0Marks
$ \begin{array}{c} \mathbf{C} \\ \mathbf{n}_{1}, \mathbf{n}_{2} = \left(-\frac{1}{2m} \right) \pm \left(-\frac{1}{2m} \right) \pm \frac{1}{2m} - $	Q No			
- x - x e -		$n_{1} n_{2} = \begin{pmatrix} c_{n} \\ c_{n} \end{pmatrix} + \begin{pmatrix} c_{n} \\ c_{n} \end{pmatrix} + \begin{pmatrix} c_{n} \\ c_{n} \end{pmatrix} + \begin{pmatrix} c_{n} \\ c_{n} \\ c_{n} \\ c_{n} \end{pmatrix} + \begin{pmatrix} c_{n} \\ c_{n} \\ c_{n} \\ c_{n} \end{pmatrix} + \begin{pmatrix} c_{n} \\ c_{n$	8M Correct expression = 2M	29 min.
		- x + - xe = zetent		

10.

$$\frac{1}{(2 + 2m)} = \frac{1}{2m} \frac{1}{(2 + 2m)} = \frac{1}{2m} \frac{1}{(2m)} \frac{1}{(2m)} = \frac{1}{(2m)} \frac{1}{$$

· · · · · ·

. . . .