No.
No. of Contract of
1000
Ser
Station and the
and the second se
and the second s
The statement of the st
GAIN MORS KHOWLEDGE
SEACH CREATER NEIGHTS

		3	}		1		1		1	1	
Roll No.											
			1	1	1	1	1	1			

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem 2019-20 Course Code: MEC 321 Course Name: THEORY OF ELASTICITY Program & Sem: B.Tech. (MEC) & V DE

Date: 27.09.2019 Time: 11.00AM to 12.00PM Max Marks: 40 Weightage: 20%

Instructions:

(i) All the questions are compulsory.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries six marks. (3Qx6M=18M)

- 1. Define Stress tensor and Strain tensor & explain with their matrix notation. (C.O.NO.1) [Knowledge]
- 2. State all strain-displacement relations for three dimensions in Cartesia Coordinates. (C.O.NO.1) [Knowledge]
- 3. Explain the following
 - i) Plane stress condition and ii) Plane strain conditions

(C.O.NO.1) [Comprehension]

Part B [Thought Provoking Questions]

Answer the Question. The Question carries ten marks. (1Qx10M=10M)

4. Derive the equilibriums equation in Cartesian co-ordinates from the fundamentals for 2-Dimensions with usual notations taking into consideration of body forces.

(C.O.NO.1) [Application]

Part C [Problem Solving Questions]

Answer the Question. The Question carries twelve marks.

(1Qx12M=12M)

5. Determine the maximum Principal stress, minimum Principal stress and maximum Shear stress for a rectangular block subjected to following state of stress using Mohr's Circle method, $\sigma_x = 80 \text{ N/m}^2$, $\sigma_y = 40 \text{ N/m}^2$ & $\tau_{xy} = 30 \text{ N/m}^2$ Check the results analytically.

(C.O.NO.2) [Application]

SCHOOL OF ENGINEERING

Semester: Odd

Course Code: MEC-321

Course Name: Theory of

Date: Time: Max Marks: Weightage:

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	mory recall type rks allotted] om's Levels K	prov [Ma	type otted]		blem S type arks all A		Total Marks
1	CO1	1	06				** ***********************************			06
2	CO2	2	06			 			1. mar	06
3	CO1	1			06	 				06
4			 			 	10			10
5							12			12
	Total Marks		12		06	 	22		990 900 · · · · · · · · · · · · · · · ·	40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Dr. Rajendrakumar]

Reviewers' Comments

Annexure- 11: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: V

Course Code: MEC-321

Course Name: Theory of Elasticity

Date: 27/09/2019 Time: 1 hour Max Marks: 40 Weightage: 20%

Part A

(3Q x 6M - 18Marks)

Q-No	Solution	Scheme of Marking	Max. Time required for each Question
1	Stress tensor definition and explaination with matrix notation	03 Marks	08 Min
	Stress tensor definition and explaination with matrix notation	03 Marks	
2	Explaination of the Generalized Hooke's law	06 Marks	08 Min
3	Plane stress condition explaination	02 Marks	08 Min
	Plane strain condition explaination	02 Marks 02 marks	
	Examples for each		

	- Part l	$\mathbf{B} \qquad (1Q \times 10M = 10M)$	10M = 10Marks)		
Q No	Solution	Scneme of Marking	Max. Time required for each Question		
4	Derivation of three stress equilibrium equations with neat sketch OR Mohr's Circle Diagram $\sigma_1 = 114 \text{ N/m}^2, \sigma_2 = -13 \text{ N/m}^2$ & $\tau_{max} = 64 \text{ N/m}^2$	Sketch (03) · Derivation (07) Diagram with values 07 Marks Checking analytically– 03 marks	16 Min		
5	Fourth order polynomial Satisfying the Biharmonic Equation and establishing the condition between the coefficients of the polynomial. Stating the Boundary conditions Determination of expressions for σ_x , σ_y & τ_{xy}	02 Marks 02 Marks 06 Marks	20 Min		

Q No	Solution	Scheme of Marking	Max. Time require for eac Questic
---------	----------	-------------------	---

. .

ε1=351.25 ε2 =35.75	Directions and Maximum shear strain (04M)+Maximum shear stress(03)	1.2
$\sum_{i=1}^{3} \frac{1}{(\xi_{a} - \xi_{c})^{2}} + (2 \xi_{b} - \xi_{a} - \xi_{c})^{2}$		
$_{\rm Ymax} = \chi(\epsilon_a - \epsilon_c) + (1 - \epsilon)$ - 315 5 × 10 ⁻⁶ rad		
$c_1 - \frac{1}{2} \tan^{-1} \left(\frac{2 \epsilon_b - \epsilon_a}{\epsilon_a - \epsilon_c} \right)$		#
$=\frac{1}{2}\tan^{-1}\left(\frac{130-285-102}{285-102}\right)$		
$=\frac{1}{2}\tan^{-1}(-1.4037)$		
$o_{1} = -(27^{\circ} \ 16')$		
$\omega_2 = (117 \cdot 16)$		
$\sigma_1 = \frac{E}{1 + v^2} \left(\epsilon_1 + v \epsilon_2 \right)$		* - -
$=rac{70 \times 10^9}{1 - (0.32)^2} (35) (25 \times 0.32 \times 35.75) < 10^{-9}$		
= 28/285 MPa		1
$\phi_{2}=rac{E}{1+v^{2}}\left(e_{2}+v(k_{1}) ight)$		
$=\frac{70\times10^{9}}{1-(0.32)^{2}}(35.75+0.32\times351.25)\times10^{-6}$		
= 11.553 MPa		
$\tau_{\rm max} = \frac{E}{2(1 \pm v)} \gamma_{\rm max} = \frac{70 \times 10^9}{2(1 \pm 0.32)} \times 315.5 \times 10^{-6}$		
= 8.365 MPo		į.

r

· · · ·

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST – 2

Sem & AY: Odd Sem. 2019-20 Course Code: MEC 321 Course Name: THEORY OF ELASTICITY Program & Sem: B.Tech (MEC) & V DE Date: 16.11.2019 Time: 11.00 AM to 12:00 PM Max Marks: 40 Weightage: 20%

Instructions:

I. All the questions are compulsory.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries six marks. (3Qx6M=18M)

1. What are stress invariants. Write the expressions for stress invariants in terms of stress components for a given state of stress at a point.

(C.O.NO.1) [Knowledge]

(C.O.NO.1) [Knowledge]

3. Explain the following briefly giving necessary equations

2. State and explain Strain Compatibility conditions.

1) Castiglino's theorem 2) Principle of Virtual work.

(C.O.NO.1) [Comprehension]

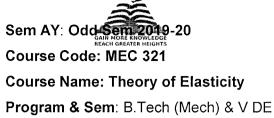
Part B [Thought Provoking Questions]

Answer the Question. The Question carry ten marks. (1Qx10M=10M)

4. Derive the equilibrium equation in Cartesian co-ordinates from the fundamentals for 3-Dimensions taking into consideration of body forces.

(C.O.NO.2) [Application]

Part C [Problem Solving Questions]


Answer the Question. The Question carry twelve marks. (1Qx12M=12M)

 The stress at a point is given with respect to the axes Ox1x2x3 by the values Determine (C.O.NO.2) [Application]

$$\sigma_{ij} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -6 & -12 \\ 0 & -12 & 1 \end{bmatrix} MPa$$

a) The Deviotoric and Hydrostatic stress tensors b) Maximum shear Stress.

SCHOOL OF ENGINEERING

Date: 16/11/2019 Time: 1.00 hr Max Marks: 40 Weightage: 20%

Thought Memory recall type provoking type Unit/Module **Problem Solving** Total Number/Unit [Marks allotted] [Marks allotted] Marks type Q.NO C.O.NO Bloom's Levels Bloom's Levels /Module Title [Marks allotted] Κ С А 1 CO1 4 06 06 C01 2 3 06 06 3 CO1 06 4 06 4 CO2 3 10 10 5 CO2 12 4 12 Total 40 12 06 22 Marks

Extract of question distribution [outcome wise & level wise]

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SOLUTION

Semester: V

Course Code: MEC-321

Course Name:Theory of Elasticity **Program & Sem**: B.Tech (Mech) & V

Max Marks: 40 Weightage: 20%

	Part A	$(3Q \times 6M = 18Ma)$	rks)
Q No	Solution	Scheme of Marking	Max. Time required for each Question
	a)Definition of stress Invariants I 1, I 2, I3	03M	08
	b) Expressions for the Invariants I 1, I 2, I3	03M	
2	• Strain compatibility equations in 3D space are; $\frac{\partial^{2} \gamma_{yy}}{\partial x \partial y} - \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{3} \varepsilon_{x}}{\partial y^{2}}$ $\frac{\partial^{2} \gamma_{yz}}{\partial y \partial z} - \frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}} - \frac{\partial^{3} \varepsilon_{z}}{\partial y^{2}}$ $\frac{\partial^{2} \gamma_{yz}}{\partial x \partial z} - \frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}} - \frac{\partial^{3} \varepsilon_{z}}{\partial y^{2}}$ $\frac{\partial^{2} \gamma_{yz}}{\partial x \partial z} - \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} - \frac{\partial^{2} \varepsilon_{z}}{\partial z^{2}}$ $\frac{\partial^{2} \gamma_{yz}}{\partial x \partial z} - \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} - \frac{\partial^{2} \varepsilon_{z}}{\partial z^{2}}$ $\frac{\partial^{2} \gamma_{yz}}{\partial x \partial z} - \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} - \frac{\partial^{2} \varepsilon_{z}}{\partial z^{2}}$ $\frac{\partial^{2} \varepsilon_{z}}{\partial x \partial y} - \frac{\partial^{2} \varepsilon_{z}}{\partial z} - \frac{\partial^{2} \varepsilon_{z}}{\partial x} - \frac{\partial^{2} \varepsilon_{z}}{\partial z} - \frac{\partial^{2} \varepsilon_{z}}{\partial z}$	Explanation with Equations=06M	08
3	a) Statement and Explanation of Castiglino's theorem	03M	08

 $\sim c$ 101 (1 (**a** a

Date: /2019 Time:

.

 b) Statement and Explanation of principle of virtual work 	03M	

		Part B	(1Q x 10M	= 10Marks)
Q No	Solution	Sch	eme of Marking	Max. Time required for each Question
4	$c_{yz} + \frac{\partial \tau_{yz}}{\partial y} \Delta_y$ $c_{yz} + \frac{\partial \tau_{yz}}{\partial y} \Delta_y$ $c_{yz} + \frac{\partial \tau_{yz}}{\partial y} \Delta_z$			18 Min
	z_{1}		Fig =04M,	
	$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + F_x = 0$ $\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yz}}{\partial z} + F_y = 0$	De	erivation =06M	
	$\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + F_z = 0$			

	Part C	(1Q x12 M = 12Marks)	
Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	a) Deviatoric stress matrix & Spherical Stress matrix The principal stresses were found to be $\sigma_1 = 10$, $\sigma_2 = 5$, $\sigma_3 = -15$ and so the maximum	03M 03M	
	shear stress is $\tau_{\max} = \frac{1}{2}(\sigma_1 - \sigma_3) = \frac{25}{2}$	06M	18 Min
			: : : ·

-

-	
100 million (100 million)	
A CONTRACTOR OF A	
And the second s	,
GAIN MORE	INDWA EDGE
REACH GREA	TER HEIGHTS

PRESIDENCY UNIVERSITY BENGALURU

Roll No

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20 Course Code: MEC 321 Course Name: THEORY OF ELASTICITY Program & Sem: B.Tech (MEC) & V (DE-I) Date: 20 December 2019 Time: 9:30 AM to 12:30 PM Max Marks: 80 Weightage: 40%

Instructions:

(i) Read the all questions carefully and answer accordingly.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 2 marks. (10Qx2M=20M) (C.O.No.1) [Knowledge] 1. Define stress at a point. 2. Define plane stress. (C.O.No.1) [Knowledge] 3. State Saint Venant's principle. (C.O.No.2) [Knowledge] 4. Significance of Biharmonic equation. (C.O.No.2) [Knowledge] 5. What is pure bending of a curved bar explain very briefly. (C.O.No.2) [Knowledge] 6. Write the dynamic equilibrium equation for a rotating Disc. (C.O.No.2) [Knowledge] 7. Define Hydrostatic stress tensor. (C.O.No.2) [Knowledge] (C.O.No.2) [Knowledge] 8. Define Deviotoric stress tensor. 9. Briefly explain the term "Torsion" with an example. (C.O.No.3) [Knowledge] 10. Briefly explain Polar moment of Inertia of Shaft. (C.O.No.3) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions.

(4Q=30M)

- 11. Explain generalized Hooke's law.
 [7M] (C.O.No.2) [Comprehension]
- 12. State and explain compatibility conditions[7M] (C.O.No.2) [Comprehension]
- 13. Write notes on: 1) Torsional rigidity and Torsional strength giving equations.

[8M] (C.O.No.3) [Comprehension]

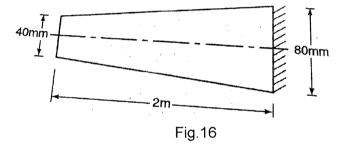
14. Derive σx, σy and τxy for rectangular beam in Cartesian coordinates using 4th order
 Polynomial. [8M] (C.O.No.1) [Comprehension]

Page 1 of 2

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 10 marks.

 $\sigma_{ij} = \begin{bmatrix} 2.5 & -0.5 & 0 \\ -0.5 & 2.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} MPa$


Determine

- a) The Principal Invariants of σ
- b) Principal stresses and value maximum shear stress

(C.O.No.2) [Application]

16. The uniformly tapering shaft as shown in the figure below is subjected to a torque of 2kN-m at its free end. Find the angle of twist and maximum shear stress in the shaft if G= 80 kN/mm². What is the percentage error if is calculated as a shaft of average diameter.

(C.O.No.3) [Application]

A hollow propeller shaft of a steam ship is to transmit 3750kW at 240 rpm. If the internal diameter is 0.8 times the external diameter and if the maximum shear stress developed is to be limited to 160 N/mm², determine the size of the shaft. (C.O.No.3) [Application]

(3Qx10M=30M)

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO (% age of CO)	t	Memory recall type [Marks allotted] Bloom's Levels K		Problem Solving type [Marks allotted] A	Total Marks
		/Module Title	ĸ	C	~	
PART A	CO 01 CO 02	All the 5 modules	20			20
Q. NO1 TO 10	CO 03					
PART B Q.NO.11	CO 01	MODULE 01 Per Unit System		7		7
PART B Q.NO.12	CO 02	MODULE 03 Load Flow Studies		7		7
PART B Q.NO.13	CO 03	MODULE 05 Load Flow Studies		8		8
PART B Q.NO.14	CO 02	MODULE 02 Fault		8		8

		Analysis				
PART C	CO 02	MODULE			10	10
Q.NO.15		04				
		Stability				
		studies				
PARTC	CO 03	MODULE			10	10
Q.NO.16		02				
		Load Flow				
		Studies				
PARTC	CO 03	MODULE			10	10
Q.NO.17		03				
		Fault				
		Analysis				
	Total Mark	Ś	20	30	30	80

K =Knowledge Level C = Comprehension Level, A = Application Level

C.O WISE MARKS DISTRIBUTION:

CO 01: 10 MARKS, CO 02: 26 MARKS, CO 03: 27 MARKS, CO 04:17 MARKS

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must

be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

Part A

SOLUTION & SCHEME

Sem AY: Odd Sem 2019-20

Course Code: MEC-321

Course Name:Theory of Elasticity Program & Sem: B.Tech (Mech) & 5th Date: 20 December2019 Time: 9.30AM TO 12.30PM Max Marks: 80 Weightage: 40%

Instructions:

Read the all questions carefully and answer accordingly

 $(10Q \times 2M = 20Marks)$

Q No	Solution	Scheme of Marking	Max. Time require d for each Questio n
1	Definition of stress at a point	02	
2	Definition of plane stress	02	
3	Statement of Saint Venants principle	02	
4	Significance of bi harmonic equation	02	
5	Explanation for pure bending of curved bar	02	40
6	Stating Dynamic Equilibrium Equations for rotating disc	02	
7	Definitions of Hydrostatic stress tensor	02	
8	Definition Deviotoric stress tensor.	02	
9	Definition and Explanation of Torsion by giving one example	02	
10	Define polar moment of Inertia and explain	02	

	Part B	(2Q x7+2Qx8 = 30Mark)	s)
Q No	Solution	Scheme of Marking	Max. Time required for each Question
11	Hooke's law in 2 Dimensions and 3 Dimensions giving matrix equation taking in to considerations of [D] Matrix, also state the effects isotropy	2D & 3D Equations(03M)+Generalized Hooke's law with [D] Matrix[03M]+stating the effect of the isotropy[01M]	
			20
12	Strain compatibility equations in 3D space are; $ \frac{\partial^{2} \gamma_{y}}{\partial x \partial y'} = \frac{\partial^{2} \delta_{y}}{\partial x^{2}} + \frac{\partial^{3} \delta_{x}}{\partial y^{2}} $ $ \frac{\partial^{2} \gamma_{y}}{\partial y \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}} + \frac{\partial^{3} \varepsilon_{x}}{\partial y^{2}} $ $ \frac{\partial^{2} \gamma_{y}}{\partial y \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}} + \frac{\partial^{3} \varepsilon_{x}}{\partial y^{2}} $ $ \frac{\partial^{2} \gamma_{y}}{\partial x \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} $ $ \frac{\partial^{2} \gamma_{y}}{\partial x \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} $ $ \frac{\partial^{2} \gamma_{y}}{\partial x \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} $ $ \frac{\partial^{2} \gamma_{y}}{\partial x \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} $ $ \frac{\partial^{2} \gamma_{y}}{\partial x \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} $ $ \frac{\partial^{2} \varepsilon_{y}}{\partial x \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} $	Explanation with equations=07M	20

13	Torsional Rigidity Explannation with Equation Torsional strenght Explannation with Equation	Explanation with equation $G\theta = TL/J$ (04M)	20
		Explanation with equation	
		$T/J = fs/R \qquad (04M)$	
14	Derivation of σ_x	Choosing appropriate 4 th order	20
	Derivation of σ_v and τ_{xv}	polynomial (02M)	
		Stating boundry conditions	
		(01M)	
		Derivation of σ_x (02M)	
		Derivation of σ_y and τ_{xy} (03M)	

	Part C	(3Q x 10 M = 30 Marks))
Q No	Solution	Scheme of Marking	Max. Time requirec for each Question
15	Determination of Principal Invariants of $oldsymbol{\sigma}$	I1=6MPa, I2 = 11MPa, I3 = 6 MPa (03M)	20
	Determination of principal stresses	σ ₁ =3MPa, σ ₂ = 2MPa σ ₃ = 1MPa (03M)	
	Determination of maximum shear stress	τ _{max} = 1 MPa	

.

•

Determination of angle of twist	Formula (01M)	20
	$\theta = 0.0580$ radians (04M)	
Determination of maximum shear stress	Formula (01M)	
Determination of %error	$\tau_{max} = 565.88 MPa \ (02M)$	
	%error = 32.25 (02M)	
Determination of the size of the shaft	Calculation of J= $0.05796d_1^4$ [02M] Calculation of Torque T = 1.49207 N-mm [03M] Calculation of d1 & d2 using Torsion formula d1 = 200.37 mm, d2 = 160.3 mm [05M]	20
	Determination of maximum shear stress Determination of %error	$\theta = 0.0580 \text{ radians} (04\text{ M})$ Determination of maximum shear stress Determination of %error $\tau_{max} = 565.88\text{ MPa} (02\text{ M})$ %error = 32.25 (02M) Determination of the size of the shaft Calculation of J= 0.05796d_1^4 [02\text{ M}] Calculation of Torque T = 1.49207 N-mm [03M] Calculation of d1 & d2 using Torsion formula

· · · · · ·