

PRESIDÉNCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST

Sem & AY: Odd Sem 2019-20

Course Code, NEC 214

Course Name: DYNAMICS OF MACHINES

Program & Sem: B.Tech & V

Date: 28:09:2019

Time: 9.30AM to 10.30AM

Max Marks: 40

Waightage: 20%

instructions:

(i) Use graph sheet to draw toque - moment (T-O) diagram

Part A [Memory recall Questions]

Answer all the Questions, Each Question carries two marks.

(4Gx2W=8M)

State the conditions for static equilibrium of a two force and a toque member.

(CO.NO.1) [Knowledge]

2. State and explain D Alembert's principle.

(CO.NO 1) [Knowledge]

3 Derive an expression for maximum fluctuation of energy in a flywhee,

(CO.NO.2) (Knowledge)

Draw a sketch of engine mechanism (slider crank mechanism) and show the various forces acong on the engine components.
 (CO.NO.1) [Knowledge]

Part 8 [Thought Provoking Questions]

Answer all Questions. Each Question patries four marks.

(3Qx4W=12M)

5. Draw T-8 diagram for three cylinder double acting steam angine and show that it requires a lighter flywheel compared to single cylinder double acting steam engine.

(CO.NO.2) [Comprehension]

6. Explain, how flywheel helps to meet uneven torque requirement in punching press application. (CO.NO.2) [Comprehension]

7. Prove that, the piston executes a simple harmonic motion when the connecting rod is large. (CO.NO.1) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each question carries ten marks.

(2Qx10M=20M)

8. A four bar mechanism as shown in figure 1 with the following dimensions, is acted upon by a force as shown in the figure. AD=500 mm, AB=400 mm, BC=1000 mm, DC=750 mm, DE=350 mm. Determine the input torque on the link AB for static equilibrium of the mechanism.

(CO.NO.1) [Comprehension]

Figure 1

- 9. In a machine, the intermittent operations demand the torque to be applied as follows:
 - a) During the first half revolution, the torque increases from 800 N-m to 3000 N-m.
 - b) During the next one revolution, the torque remains constant.
 - c) During the next one revolution, the torque decreases uniformly from 3000 N-m to 800 N-m.
 - d) During last half revolution, the torque remains constant.

Thus, a cycle is completed in 4 revolutions. The motor to which the machine is coupled exerts a constant toque at a mean speed of 250 rpm. A flywheel of mass 1800 kg and radius of gyration 500 mm is fitted to the shaft. Determine:

- Power of the motor
- ii. Total fluctuation of speed of the machine shaft.

(CO.NO.2) [Application]

Semester: V

Course Code: MEC 214

Course Name: Dynamics of Machines

Date: 28 Sep 2019

Time: 9.30 am to 10.30 am

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

	<u> </u>	T	,		T				
Q.NO	CONO	Module		ry recall		ught	Problem	Solving	
Q.IVO	C.O.NO		1	pe	-, -		type [Marks allotted]		Total
•		Module Title	[Marks	allotted]					Marks
			Bloom	i's Level	Bloom	's Level	Bloom'	s Level	
			Williams #:						
1.	1	Module I	20.4	IZ					
	•	Force Analysis	2M	K]		2
2.	1	Module I	23.4	1/					
۷.		Force Analysis	2M K						2
3.	2	Module 2	2M	K			WALL SECTION OF VIEW OF		William 1 1994 - 1994
<u> </u>	•	Flywheel	Z1V1	, ,		C THE STATE OF THE			2
4.	1	Module I	21/1						
	Force Analysis	N.					2		
5.	2	Module 2			454	_	-		
Ψ.		Flywheel			4M	С			4
6.	2	Module 2			454				
· · ·	-	Flywheel		ļ	4M	С			4
7.	1	Module I			488				
	1	Force Analysis			4M	С			4
8.	1	Module I							
J.	•	Force Analysis				COOL Manager	10M	C	10
9.	2	Module 2					4055		and the conference of the second second second
		Flywheel					10M	Α	10
	Total		Λ.		12				
	Marks	a co	08)			20		40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Dr Mahesha K]

Reviewers' Comments

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: V

Course Code: MEC 214

Course Name: Dynamics of Marines

Branch & Sem: MEC / V

Date: 28 Sep 2019

Time: 9.30 am to 10.30 am

Max Marks: 40

Weightage: 20%

Part A

 $(4Q \times 2M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1.	T = F ₁ × h = F ₂ × h A member under the action of two forces and an applied torque will be in equilibrium if The forces are equal in magnitude, parallel in direction and opposite in sense The forces form a couple which is equal and opposite to the applied torque.	1M	3 Min
2.	"The inertia forces and couples, and the external forces and torques on a body together give an equilibrium" $ \Sigma F + F_i = 0 \text{where} \Sigma F = \text{Sum of external forces}, \ F_i = \text{Inertia Force} $ $ \Sigma T + C_i = 0 \ \text{where} $	1M 0.5M	3 Min

	21 Sum of external rorques, C1 - metha Couple	U.SIYI	
	Maximum fluctuation of energy		
	M. = Maximum K.E. Minimum K.L.	Total Control of the	
	$\frac{1}{2} + \ell\left(\omega\right) = \frac{1}{2} + \ell\left(\omega\right) = \frac{1}{2} + \ell\left(\omega\right) = \left(\omega\right)$	1 M	
3.	$=\frac{1}{2}\times I(\omega_1+\omega_2)(\omega_1-\omega_2)-I(\omega(\omega_1-\omega_2))$	*	3 Min
	$\Delta I = I(0) \left(\frac{0 - 0}{0} \right)$ $= I(0) \cdot C_s = m \cdot k^2(0) \cdot C_s$	1M	
4.	* . (a - 5, 70 · · · · · · · · · · · · · · · · · ·		
· var province and	$F = \frac{B}{E} = \frac{1}{E} \left(\frac{B}{E} - \frac{B}{E} \right)$ $F = \frac{B}{E} = \frac{1}{E} \left(\frac{B}{E} - \frac{B}{E} \right)$ $F = \frac{B}{E} = \frac{1}{E} \left(\frac{B}{E} - \frac{B}{E} \right)$	100 mm m m m m m m m m m m m m m m m m m	
	$-\frac{F}{\cos\beta}\sin(\theta + \beta)$	0.5 M x Any four	3 Min
	I - I = mz - I - I .		
ANALYSIS OF THE PROPERTY OF TH	$F_{s} = \frac{F}{\cos \beta} \qquad F_{s} + F_{s} \sin \beta - I \tan \beta \qquad F_{s} + F_{s} \cos(\theta + \beta) = \frac{F}{\cos \beta} \cos(\theta + \beta)$		

Part B

 $(3Q \times 4M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5.	Resultant turning moment Mean torque Cylinder Cylinder Cylinder 1 2 3 60° 120' 180' 240 300 360 Crank angle	T-θ diagram – 3M Resultant and mean torque – 1M	6 Min

V.	Total	Γ-⊖ diagram 2M Explanation – 2M	6 Min
7.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Derivation 3M	6 Min
	will be large, Then $x = r(1 - \cos \theta)$ This is the expression for a simple harmonic motion.	1 M	

Part C

 $(2Q \times 10M = 20 \text{ Marks})$

Q		Scheme of	Max. Time
No	Solution	Marking	required
			for each
			Question

0.		,	
	Fig. (c) (d) (e) $F_{34} = 47.8 \text{ N}$ Now, $F_{34} = F_{43} = F_{23} = F_{3}$ Member 2 will be in equilibrium if F_{12} is equal, parallel and opposite to F_{32} and $T = -F_{32} \times h = -47.8 \times 393 = -18.780 \text{ N.mm}$ The input torque has to be equal and opposite to this couple i.e., $T = 18.78 \text{ N m (clockwise)}$	FBD 4 M Force Polygon 2M 1M	15 Min
9.	Constantle Unique for one complete sycle, $t = \text{trea} O BCDB D$ of $I = \text{Area} O B I = \text{Area} A B I = \text{Area} I B C M$ Area $MCD = 8\pi \times 300 = \pi \times \frac{2200}{3} \times 2\pi \times 2200 \times \frac{2\pi \times 2200}{3}$ 14 100 $\pi = \text{Nm} = \frac{11100\pi}{8\pi} = \frac{1160 \times 8 \text{ m}}{8\pi} = \frac{11100\pi}{3000} = \frac{1160 \times 8 \text{ m}}{8\pi} = \frac{11100\pi}{3000} = \frac{11100\pi}{8\pi} = \frac{11100\pi}{3000} = \frac{111000\pi}{3000} = 1110$	T- Θ Diagram 2M WD / Cycle 2M Tm – 1M P – 1M Δ E- 2M Cs- 2M	15 Min

(3000 17625) 176 2x 3534	11.055	!	1
2 2 2 1 1 058 N m	$(800 \times (0.5)) \rightarrow \frac{2\pi}{100} \times \frac{250}{100}$		
K ork to	0.0358 of 3.58%.		

Roll No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Date: 20.11.2019

Course Code: MEC 214

Time: 09:30 AM to 10:30 AM

Course Name: DYNAMICS OF MACHINES

Max Marks: 40

Program & Sem: B.Tech, (MECH) & V Sem

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

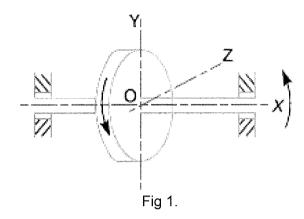
(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer both the questions. Each question carries five marks. (2Qx5M=10M)

- 1. With a neat sketch, discuss the gyroscopic effect on an aero plane when the rotating masses of engine rotate in a clockwise direction when viewed from the tail and it takes a left turn. (C.O.NO.3)[Comprehension]
- Four masses m₁, m₂, m₃ and m₄ are 200 kg, 300 kg, 240 kg and 260 kg respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively and the angles between successive masses are 45°, 75° and 135°. Find the position and magnitude of the balance mass required, if its radius of rotation is 0.2 m. (C.O.NO.4)[Comprehension]


Part B [Thought Provoking Questions]

Answer both the questions. Each question carries eight marks. (2Qx8M=16M)

3. The turbine rotor of a ship has a mass of 8 tonnes and a radius of gyration 0.6 m. It rotates at 1800 r.p.m. clockwise, when looking from the stern. Determine the gyroscopic couple, if the ship travels at 100 km/hr and steer to the left in a curve of 75 m radius.

(C.O.NO.3)[Application]

4. A uniform disc of 150 mm diameter has a mass of 5 kg. It is mounted centrally in bearings which maintain its axle in a horizontal plane. The disc spins about it axle with a constant speed of 1000 r.p.m. while the axle precesses uniformly about the vertical at 60 r.p.m. The directions of rotation are as shown in Fig. 1. If the distance between the bearings is 100 mm, find the resultant reaction at each bearing due to the mass and gyroscopic effects. (C.O.NO.3)[Application]

Part C [Problem Solving Questions]

Answer the Question. The question carry fourteen marks.

(1Qx14M=14M)

5. A, B, C and D are four masses carried by a rotating shaft at radii 100 mm, 125 mm, 200 mm and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 10 kg, 5 kg and 4 kg respectively. Find the required mass A, and relative angular settings of the four masses so that the shaft shall be in complete balance. (C.O.NO.4)[Application]

Semester: 5th Sem

Course Code: MEC 214

Course Name: Dynamics of Machines

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	Memory recall type Problem Solution [Marks allotted] [Marks allotted] Thought provoking type Problem Solution [Marks allotted] type Bloom's Levels Bloom's Levels [Marks allotted] K C A			Total Marks			
1	3	3					5			5
2	4	4					5			5
3	3	3							8	8
4	3	3							8	8
5	4	4							14	14
	Total Marks						10		30	40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 20-11-2019

Semester: 5th Sem Time: 09:30 am to 10:30 am

Course Code: MEC 214 Max Marks: 40

Course Name: Dynamics of Machines Weightage: 20%

Part A

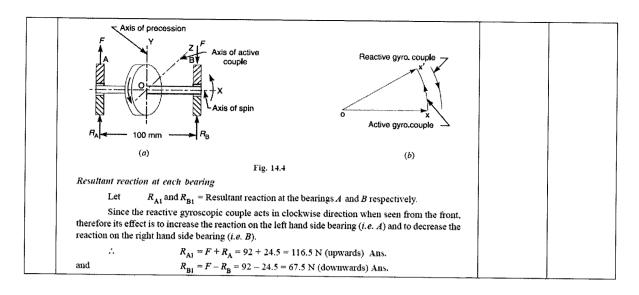
 $(2Q \times 5M = 10 \text{ Marks})$

Q N o	Solution	Scheme of Markin g	Max. Time required for each Questio n
1	If the plane takes a left turn, the angular momentum vector is shifted and may be represented by the vector ob. The change is shown by the vector ab and is the active gyroscopic couple. This vector is in the horizontal plane and is perpendicular to the vector oa in the limit. The reactive vector is given by b'a' which is equal and opposite to the vector ab. The interpretation of this vector shows that the couple acts in the vertical plane and is counterclockwise when viewed from the right-hand side of the plane. This indicates that it tends to raise the nose and depress the tail of the aeroplane.	5 marks	5 min
2	2. Graphical method The magnitude and the position of the balancing mass may also be found graphically as discussed below: 1. First of all, draw the space diagram showing the positions of all the given masses as shown in Fig 21.6 (a). 2. Since the centrifugal force of each mass is proportional to the product of the mass and radius, therefore $m_1 \cdot r_1 = 200 \times 0.2 = 40 \text{ kg-m}$ $m_2 \cdot r_2 = 300 \times 0.15 = 45 \text{ kg-m}$ $m_3 \cdot r_3 = 240 \times 0.25 = 60 \text{ kg-m}$ $m_4 \cdot r_4 = 260 \times 0.3 = 78 \text{ kg-m}$ 3. Now draw the vector diagram with the above values, to some suitable scale, as shown in Fig. 21.6 (b). The closing side of the polygon ae represents the resultant force. By measurement, we find that $ae = 23 \text{ kg-m}$ 0.15 m 0.25 m 0.26 m 0.25 m 0.26 m 0.25 m 0.26 m 0.27 m 200 kg (a) Space diagram. (b) Vector diagram	Vector Dia: 3 marks Cal: 2 marks	5 min

4. The balancing force is equal to the resultant force, but *opposite* in direction as shown in Fig. 21.6 (a). Since the balancing force is proportional to m.r, therefore

 $m \times 0.2 = \text{vector } ea = 23 \text{ kg-m}$ or m = 23/0.2 = 115 kg Ans.

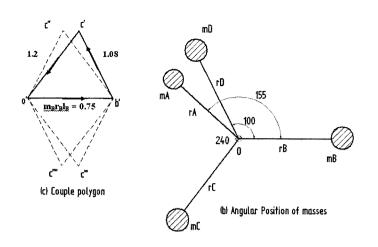
By measurement we also find that the angle of inclination of the balancing mass (m) from the horizontal mass of 200 kg.


 $\theta = 201^{\circ}$ Ans.

Part B

 $(2Q \times 8M = 16 \text{ Marks})$

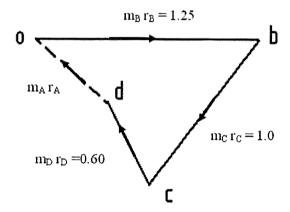
Q N o	Solution	Scheme of Markin g	Max. Time required for each Questio n
3	Solution. Given: $m=8$ t = 8000 kg; $k=0.6$ m; $N=1800$ r.p.m. or $\omega=2\pi\times1800/60$ = 188.5 rad/s; $\nu=100$ km/h = 27.8 m/s; $R=75$ m We know that mass moment of inertia of the rotor. $I=m.k^2=8000~(0.6)^2=2880~\text{kg-m}^2$ and angular velocity of precession, $\omega_p=\nu/R=27.8/75=0.37~\text{rad/s}$ We know that gyroscopic couple, $C=I.\omega.\omega_p=2880\times188.5\times0.37=200~866~\text{N-m}$ $=200.866~\text{kN-m}$ Ans. We have discussed in Art. 14.6, that when the rotor rotates in clockwise direction when looking from the stern and the ship steers to the left, the effect of the reactive gyroscopic couple is to raise the bow and lower the stern.	Cal: 5 marks Effect: 3 marks	10 mins
4	Solution. Given: $d=150$ mm or $r=75$ mm = 0.075 m; $m=5$ kg; $N=1000$ r.p.m. or $\omega=2\pi\times 1000/60=104.7$ rad/s (anticlockwise); $N_{\rm p}=60$ r.p.m. or $\omega_{\rm p}=2\pi\times 60/60=6.284$ rad/s (anticlockwise); $x=100$ mm = 0.1 m We know that mass moment of inertia of the disc, about an axis through its centre of gravity and perpendicular to the plane of disc, $I=mr^2/2=5~(0.075)^2/2=0.014~{\rm kg~m^2}$ $\therefore \text{ Gyroscopic couple acting on the disc,}$ $C=I.~\omega.~\omega_{\rm p}=0.014\times 104.7\times 6.284=9.2~{\rm N-m}$ The direction of the reactive gyroscopic couple is shown in Fig. 14.4 (b). Let F be the force at each bearing due to the gyroscopic couple. $\therefore F=C/x=9.2/0.1=92~{\rm N}$ The force F will act in opposite directions at the bearings as shown in Fig. 14.4 (a). Now let $R_{\rm A}$ and $R_{\rm B}$ be the reaction at the bearing A and B respectively due to the weight of the disc. Since the disc is mounted centrally in bearings, therefore, $R_{\rm A}=R_{\rm B}=5/2=2.5~{\rm kg}=2.5\times 9.81=24.5~{\rm N}$	Torque Cal: 4 marks Reaction : 4 marks	10 mins



Part C

$(1Q \times 14M = 14 \text{ Marks})$

Q No		Solution							Max. Time required for each Question
5	Plane	Mass (m) kg	Radius (r) m	Centrifugal force/ω ² (m r) kg- m	Distanc e from Ref. plane 'A' m	Couple/ ω^2 (m r L) $_{\text{kg-m}^2}$	Angle 0	Table 3 marks	
	A (R.P.)	m _A = ?	0.1	m _A = 0.1 r _A m _A	0	0	θ _A =	Diagram 3 marks	15 min
	В	10	0.125	mв rв = 1.25	0.6	0.75	θ _B =0	Cal:	
	С	5	0.2	m _C r _C = 1.0	1.2	1.2	θ _c =?	4 marks Answer	
	D 4 0.15 $m_D r_D = 0.6$ 1.8 1.08 $\theta_D = ?$						θ _D =?	4 marks	
	RP——	+ ve	600 tion of plane	600 s of masses	A1		rB mB		



$$\theta_{D} = 100^{\circ}$$
 and $\theta_{C} = 240^{\circ}$ Ans

Step 4:

In order to find m_A and its angular setting draw the force polygon as shown in figure (d).

(d) Force polygon

Closing side of the force polygon od represents the product $m_{\mbox{\scriptsize A}}$ $r_{\mbox{\scriptsize A}}$. i.e.

$$m_A r_A = 0.70 kg-m$$

Therefore, $m_A = \frac{0.70}{r}$ Ans

Step 5:

$$\theta_A = 155^0$$
 Ans

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

Date: 30 December 2019

Course Code: MEC 214

Time: 9.30 AM to 12.30 PM

Course Name: DYNAMICS OF MACHINES

Max Marks: 80

Program & Sem: B.Tech (MEC) & V

Weightage: 40%

Instructions:

(i) Read the all questions carefully and answer accordingly.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 3 marks.

(6Qx3M=18M)

1. In the fig Q1, $F_1=F_2=100$ N, h=50mm. Find the magnitude in N-m and direction of T.

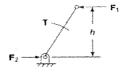
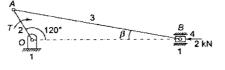


Fig Q1


Fig Q3

(C.O.No.1) [Knowledge]

2. State the condition of equilibrium of a three force member.

(C.O.No.1) [Knowledge]

3. Identify two force, three force and two forces with a torque member in the fig Q3 shown.

(C.O.No.1) [Knowledge]

4. Draw a turning moment diagram for a single cylinder four stroke engine.

(C.O.No.2) [Knowledge]

5. The turning moment diagram for a petrol engine is drawn to the following scales: Turning moment, 1 mm = 5 N-m; crank angle, 1 mm = 1°. The turning moment diagram repeats itself at every half revolution of the engine and the areas above and below the mean turning moment line taken in order are 295, 685, 40, 340, 960, 270 mm². Identify the points where the energy is maximum and minimum. (C.O.No.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries 10 marks.

(2Qx10M=20M)

- 7. Design of governor revolves around the terms like Lift, Height of the governor, Sensitivity, Effort & Power and Controlling force. Briefly explain the terms with the help of a simple sketch and mathematical expressions wherever necessary (C.O.No.5) [Comprehension]
- 8. Stiffness of the spring plays an important role in providing a range of speed and stability in Spring Loaded Governors. Prove that the stiffness, with usual notations, is given by

$$-2\left(\frac{F_{C2}-F_{C1}}{F_2-F_1}\right)\left(\frac{x}{y}\right)^2$$

(C.O.No.5) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 14 marks.

(3Qx14M=42 M)

9. In an engine governor of the Porter type, the upper and lower arms are 200 mm and 250 mm respectively and pivoted on the axis of rotation. The mass of the central load is 15 kg, the mass of each ball is 2 kg and friction of the sleeve together with the resistance of the operating gear is equal to a load of 25 N at the sleeve. If the limiting inclinations of the upper arms to the vertical are 30° and 40°, find, taking friction into account, range of speed of the governor.

(C.O.No.5) [Application]

- 10. A ship propelled by a turbine rotor which has a mass of 5 tonne and a speed of 2100 r.p.m. The rotor has a radius of gyration of 0.5 m and rotates in a clockwise direction when viewed from the stern. Find the gyroscopic effects in the following conditions: (C.O.No.4) [Application]
 - i. The ship sails at a speed of 30 km/h and steers to the left in a curve having 60 m radius.
 - ii. The ship pitches 6 degree above and 6 degree below the horizontal position. The bow is descending with its maximum velocity. The motion due to pitching is simple harmonic and the periodic time is 20 seconds.
 - iii. The ship rolls and at a certain instant it has an angular velocity of 0.03 rad/s clockwise when viewed from stern. Explain how the direction of motion due to gyroscopic effect is determined in each case.
- 11. A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and 200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing masses are to be placed in planes X and Y. The distance between the planes Δ and X is 100 mm, between X

SOLUTION

Semester:

Odd Sem. 2019-20

Date:

xx.12.2019

Course Code:

MEC 214

Time:

3 HRS

Course Name:

DYNAMICS OF MACHINES

Max Marks: 80

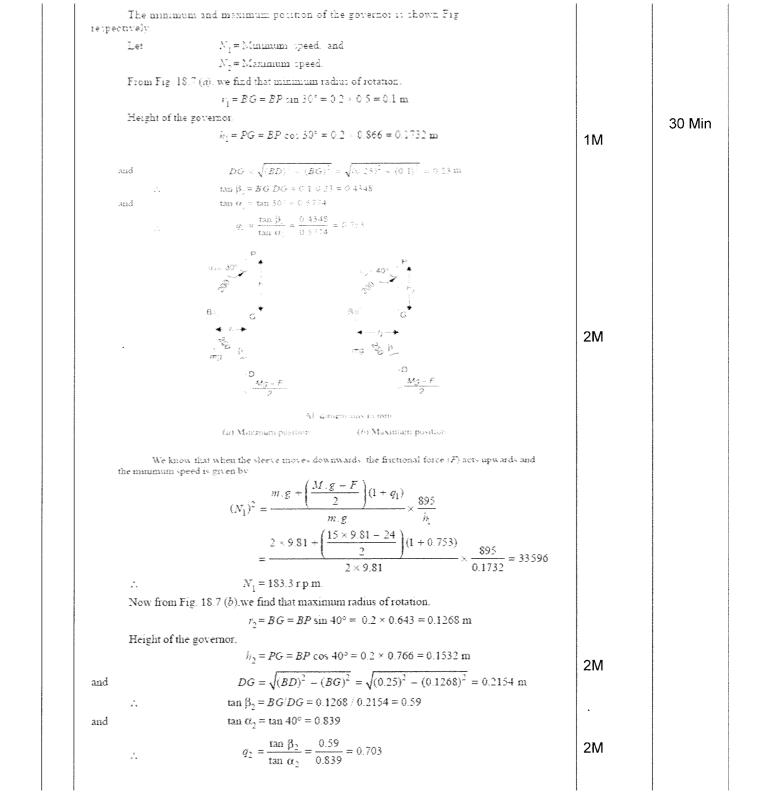
Program & Sem: UG MEC & 5TH SEM

Weightage: 40%

Part A

 $(6Q \times 3M = 18Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	$T = F_1 \times h = F_2 \times h$ T=100 x .050 = 5 N-m [CW]	1+1+1	3 Min
2	A member under the action of three forces will be in equilibrium if the resultant of the forces is zero, and	Sketch 1	
	the lines of action of the forces intersect at a point (known as point of concurrency). France France	2	4 Min
3	Link 2 : Two force and a torque member Link 3: Two force member Link 4 : Three force member	3	2 Min
4	Duffin Compression Expansion Exhaust	3	4 Min


	Energy at tr = & - 2 - tr - 2 - tr = & = Energy at A		
6	$E = I\omega^2 c_s$	1	
	$400 = I(20)^2(0.04)$	1	4 Min
	$I = \frac{1}{0.04} = 25$	1	

Part B

(2Q x 10M = 20Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
7	Height of a governor. It is the vertical distance from the centre of the ball to a point where the axes of the arms (or arms produced) intersect on the spindle axis. It is usually denoted by h. Sleeve lift. It is the vertical distance which the sleeve travels due to	Definition 1X5=5M Sketch and	
	change in equilibrium speed. Sensitiveness is defined as the ratio of the difference between the maximum and minimum equilibrium speeds to the mean	Marking – 2M Expression for Sensitivity,	
	equilibrium speed.	Controlling force, and Power – 2 M	20 Min
	Let $N_1 = \text{Minimum equilibrium speed}$, $N_2 = \text{Maximum equilibrium speed}$, and $N = \text{Mean equilibrium speed} = \frac{N_1 + N_2}{2}$. \therefore Sensitiveness of the governor		
	$= \frac{N_2 - N_1}{N} = \frac{2(N_2 - N_1)}{N_1 + N_2}$ $= \frac{2(\omega_2 - \omega_1)}{\omega_1 + \omega_2}$ (In terms of angular speeds)		
	Effort and Power of a Governor: The effort of a governor is the mean force exerted at the sleeve for a given percentage change of speed* (or lift of the sleeve).		
	The power of a governor is the work done at the sleeve for a given percentage change of speed. It is the product of the mean value of the effort and the distance through which the sleeve moves. Mathematically,		

	Sketch 2 M	
$S_{2} = F_{2}$ $S_{3} = F_{4}$ $S_{4} = F_{5}$ $S_{5} = F_{5}$ $S_{5} = F_{5}$ $S_{5} = F_{5}$	Moment Equations 2M	20 Min
$\frac{3}{3}\left(\frac{F_{0}-F_{0}}{F_{0}}\right)$	Stiffness: 1M Lift 2M	
	Ans 3M	

	$= \frac{2 \times 9.81 + \left(\frac{15 \times 9.81 + 24}{2}\right)(1 - 0.703)}{2 \times 9.81} \times \frac{895}{0.1532} = 49.23$	6	
	m ' ' ' a' ' ' a' A A		
	$N_2 = 222 \text{ r.p.m.}$		
	We know that range of speed		
	$=N_2-N_1=222-183.3=38.7$ r.p.m. Aus.	1	
		014	
		2M	
		2M	
10	Solution, Given: $m = 5 \text{ t} + 5000 \text{ kg}$; $N = 2100 \text{ r.p.m.}$ or $\omega + 2\pi \times 2100/60 - 220 \text{ rad/s}$;	ω _{p,} 1M	
	k = 0.5 m	I, 1M	
	1. When the ship steers to the left	C, 2M	
	Given: $v = 30 \text{ km/h} + 8.33 \text{ m/s}$; $R = 60 \text{ m}$	A ma with	
ĺ	We know that angular velocity of precession,	Ans with Vector	
	$\omega_p = v/R = 8.33/60 = 0.14 \text{ rad/s}$	Diagram	
	and mass moment of inertia of the rotor. $I = m_c k^2 = 5000(0.5)^2 = 1250 \text{ kg-m}^2$	4M	
	$I = m.R^{-} = 5000(0.5)^{\circ} = 1250 \text{ kg-m}^{\circ}$	''''	
	: Gyroscopic couple,	Without	
	$C = L \omega \omega_0 = 1250 \times 220 \times 0.14 = 38500 \text{ N-m} = 38.5 \text{ kN-m}$	Vector	
	We have discussed in Art. 14.6, that when the rotor in a clockwise direction when viewed from the stern and the ship steers to the left, the effect of reactive gyroscopic couple is to raise the bow and lower the stern. Ans.	Diagram 2 M	
	2. When the ship pitches with the bow descending		
	Given: $\varphi = 6^\circ = 6 \times \pi/180 = 0.105 \text{ rad/s}$; $t_p = 20 \text{ s}$		30 Min
	We know that angular velocity of simple harmonic motion,		
	$\omega_1 = 2\pi / t_p = 2\pi / 20 = 0.3142 \text{ rad/s}$		
	and maximum angular velocity of precession,		
	$\omega_{\text{Prop}} = \varphi \omega_1 = 0.105 \times 0.3142 = 0.033 \text{ rad/s}$	1M	
	: Maximum gyroscopic couple,	014	
	$C_{max} = I.\omega \omega_{Pmax} = 1250 \times 220 \times 0.033 = 9075 \text{ N-m}$	2M	
	Since the ship is pitching with the bow descending, therefore the effect of this maximum gyroscopic couple is to turn the ship towards port side. Ans.	1M	
	3. When the ship rolls		
	Since the ship rolls at an angular velocity of 0.03 rad / s, therefore angular velocity of precession		
	when the ship rolls,	2M	
	$\omega_{k} = 0.03 \text{ rad /s}$;	
	Gyroscopic couple.		
	$C = I.\omega\omega_p = 1250 \times 220 \times 0.03 = 8250 \text{ N·m}$		
	In case of rolling of a ship, the axis of precession is always parallel to the axis of spin for all positions therefore there is no effect of gyroscopic couple. Ans.		

C	400	0.06	24	0.3	7.2	LIVI	
Ϋ́ D	m _Y 200	0. 1 0.08	0.1 m _y 16	0.4 0.6	0,04 m _z . 9,6	Angular	
	2VV	V.V8	10	V.0	7.0	Positions: 2M	
-46 BB -40			400 kg	6		2101	
(A) (X)	(B) (C) (Y)	0	O.	300 kg		Vector	
\$ \$ 0 \$	*		70	/70 200 kg		Polygon: 3 M	
		200	120 (0)	45 80 • 1 by		Ans 1M	30 Min
* 100 * 300		(UU	100.	Y	m_{y}		
400		x (o o			Force	
***************************************			m x 200 kg			Polygon:	
(a) Posi	tion of planes.	All dimensions i	n mm. (b) Angular po:	ition of masses		3M	
(**) * ***	C,		(a) marinesses has	errear or respective.		Ans 1M	
				c			
		*** v3		16 *			
96≱	· · · · · · · · · · · · · · · · · · ·	7.2		▶24			
/			,	01100			
		> p.		o introde b			
d Balane	ced couple	4.2		diamed *21			:
(O'	0	· a			
(c) Couple	polygon		(ď) Fo	rce polygon			
M	x=355 Kg		N	ly=182.5 Kg	3		