

|          | 1 | 1 | Γ | Γ | 1 | <br> | <br> | r | <br> |  |
|----------|---|---|---|---|---|------|------|---|------|--|
| Roll No. |   |   |   |   |   |      |      |   |      |  |
|          |   |   |   |   | [ |      |      |   |      |  |

# PRESIDENCY UNIVERSITY BENGALURU

# **SCHOOL OF ENGINEERING**

#### TEST 1

Sem & AY: Odd Sem. 2019-20

Course Code: CSE 305

Time: 11:00AM to 12PM

Course Name: PARALLEL COMPUTING

Max Marks: 40

Date: 27.09.2019

Program & Sem: B.Tech (CSE) & V DE

Weightage: 20%

Instructions: i) Non-Programmable calculators are allowed

ii) This question paper contains three parts. Read the question paper carefully

and answer the following questions

#### Part A

Answer all the Questions. Each question carries five marks

(4Qx5M=20M)

1) Identify the need for ever-increasing Processor Performance.

[5M]

(C.O.NO. 1) [Knowledge]

2) Describe the bottle-necks in the Von Newmann Model with the help of an Analogy.

[5M]

(C.O.NO.1) [Knowledge]

3) Define with suitable examples i) A Process ii) Threads.

[5M]

(C.O.NO.1) [Knowledge]

4) Describe Data Parallelism and Functional Parallelism using examples.

[5M]

(C.O.NO.1) [Knowledge]

#### Part B

#### Answer the Question. The Question carries eight marks.

(1Qx8M=8M)

5) Explain how very large programs that access large data sets which do not fit into main memory are executed. [8M]

(C.O.NO.1) [Comprehension]

#### Part C

Answer all the Question. The Question carries twelve marks.

(1Qx12M=12M)

6) Consider a processor operating at 1 GHz connected to a DRAM with a latency of 100ns.(no caches). Assume that the processor has two multiply-add units and is capable of executing 4 instructions in each cycle of 1ns. Block size=1 word and each element of the vector/matrix is stored as a word.

Calculate the following.

[12M]

(C.O.NO.1) [Application]

i) Peak Processor Performance

[1M]

ii) Speed of computation for obtaining the dot-product of two vectors

[5M]

iii) Speed of computation for the Multiplication of two Matrices when a Cache memory (32KB) having a latency of 1ns is added to the Processor. Assume that the cache is capable of storing Matrix A of size 32 x 32, B of size 32 x 32 and the resultant Matrix. Also assume ideal cache placement strategy in which no data item is overwritten by others.

[6M]

\*\*\*\*\*\*\*\*

# SCHOOL OF ENGINEERING



Year -: 2019 - 20

Course Code: CSE 305

Course Name: Parallel Computing

Program & Sem: B.Tech, 5

Date 27/9/19

Time: 11 am -12 pm

Max Marks: 40

Weightage: 20%

# Extract of question distribution [outcome wise & level wise]

| Q.NO | C.O.NO         | Unit/Module<br>Number/Unit<br>/Module Title |    | mory recall<br>type<br>[20M]<br>om's Levels | Pr Ause in comme | [8M | g type | Pro | blem S<br>type<br>[12M |   | Total<br>Marks |
|------|----------------|---------------------------------------------|----|---------------------------------------------|------------------|-----|--------|-----|------------------------|---|----------------|
| 1    | 1              | Module-1                                    | 5  |                                             |                  |     |        |     |                        | i | 5              |
| 2    | 1              | Module-2                                    | 5  | 2                                           |                  |     |        |     |                        |   | 5              |
| 3    | 1              | Module-2                                    | 5  |                                             | -                | -   |        |     |                        |   | 5              |
| 4    | 1              | Module-1                                    | 5  |                                             |                  |     |        |     |                        |   | 5              |
| 5    | 1              | Module-2                                    | 3  |                                             | 5                |     | ·<br>· |     |                        |   | 8              |
| 6    | 1              | Module-2                                    | 1  |                                             | 3                |     |        | 6   | 2                      |   | 12             |
|      | Total<br>Marks |                                             | 24 |                                             | 8                |     |        | 6   | 2                      |   | 40             |

K =Knowledge Level C = Comprehension Level, A = Application Level



Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Ms. Sudhakamaraju ]

Reviewers' Comments



# Annexure- II: Format of Answer Scheme



# SCHOOL OF ENGINEERING

### SOLUTION

**Year** -: 2019 - 20

Course Code: CSE 305

Course Name: Parallel Computing

Program & Sem: B.Tech, 5

Date: 27/9/19

Time: 11 am -12 pm

Max Marks: 40

Weightage: 20%

#### Part A

(4Qx5M=20)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                                | · ·                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Q<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scheme<br>of                       | Max. Time required for each Question |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marking                            |                                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>i) Many problems like Climate Modelling.</li> <li>Protein folding, Drug Discovery, energy</li> <li>Research, data Analysis etc. was not possible</li> <li>because of the less computational power available</li> <li>then.</li> <li>ii) Super computers are very expensive (but with</li> <li>the drop in the cost of microprocessors, parallel</li> <li>systems became popular and supplied the high</li> <li>performance requirements)</li> </ul> | Expanding each point (1M for each) | 8                                    |
| a de la companya de l | i) Processor - Memory Interconnect ii) Location of the Instructions and Data with                                                                                                                                                                                                                                                                                                                                                                            |                                    |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | respect to the processor.                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Expand each point and              |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Process – An instance of a program in execution                                                                                                                                                                                                                                                                                                                                                                                                              | explain analogy (2) +(3)           | 8                                    |



|                                      | Threads are independent parts of a program that can be executed simultaneously. Fexamples                        |           |   |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------|---|
| 3                                    | Data Parallelism: Independent tasks applying the same operation to different elements of a data set.             | 1+1-2-1   | 5 |
|                                      | For i = 0 to 99 do<br>a[i]= b[i]+c[i]<br>end for                                                                 |           |   |
| 4                                    | Functional Parallelism: Independent tasks applying different operations to different elements of a data set. a=2 | 2.5 + 2.5 | 8 |
| ··· ··· ·· · · · · · · · · · · · · · | b=3  m=(a + b)/2  s=(a2 * b2)/2  v=s - m2                                                                        |           |   |

Part B

(1Qx8M=8)

| Q No | Solution                                                                                                                           | Scheme of Marking            | Max. Time required for each Question |
|------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|
| 5    | Virtual Memory- main mem acts as a cache for the secondary                                                                         | Virtual Memory (2M)          | 15                                   |
|      | memory. Exploiting spatial and                                                                                                     | Swap -space -Page -Table-    |                                      |
|      | temporal locality holds only active parts of many running                                                                          | Virtual add - translation(4) |                                      |
|      | programs-swap space-pages- page<br>hit/miss-virtual addresses<br>assigned during compilation-<br>address translation required-page | TLB -(2M)                    |                                      |
|      | table-mapping between the physical address of a page and the location in main memory.                                              |                              |                                      |
|      | Virtual address= virtual page<br>number+ byte offset. – TLB-TLB<br>hit/miss                                                        |                              |                                      |

Part C

(Q x M - Marks)

| Q No | Solution                                         | Scheme of Marking                  | Max. Time required for each Question |
|------|--------------------------------------------------|------------------------------------|--------------------------------------|
| 6    | i) Peak Processor<br>Performance=4/1nsec=40GFLOP | i) 1M ii) 3M iii) 8 M<br>(2+2+2+2) | 15                                   |
|      | S ii) dot-product calculation                    |                                    |                                      |



Performance=2/200nsec=1/100ns =10MFLOPS iii) Matrix Mul-Performance=no: of operations/time taken No: of operations  $=2n^3$  (n=32) =64Koperations Time taken = Time to access the elements of A and B in to cache + computation time. Total access time =2Kx100nsec=200x10<sup>-6</sup> sec. Total computation time =  $1x10^{-9} x$  $64K/4=16 \times 10^{-6}$  sec Total execution time =200+16 micro sec

Performance =  $2 \times 32^{-3} / 216 \times 10^{-6}$ 

= 303 MFLOPS





|          | , | ,                                       | · | , | <br>, | <br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , | , | <br>, |  |
|----------|---|-----------------------------------------|---|---|-------|---------------------------------------------|---|---|-------|--|
| Roll No. |   | ATT |   |   |       |                                             |   |   |       |  |

# PRESIDENCY UNIVERSITY BENGALURU

#### **SCHOOL OF ENGINEERING**

TEST - 2

Sem & AY: Odd Sem. 2019-20

Date: 16.11.2019

Course Code: CSE 305

Time: 11:00 AM to 12:00 PM

Course Name: PARALLEL COMPUTING

Max Marks: 40

Program & Sem: B.Tech (CSE) & V

Weightage: 20%

#### Instructions:

I. Non- Programmable calculators are allowed

II. This question paper contains three parts. Read the question paper carefully and

answer the following questions

## Part A [Memory Recall Questions]

### Answer all the Questions. Each Question carries five marks.

(4Qx5M=20M)

- 1. Write an efficient C program that will create 4 threads and
  - a. Print the message "Hello World" from each thread along with their respective thread ids
  - b. Print the number of processors available in the system for execution. [1M]
  - c. Print the total number of threads.

(C.O.NO.3) [Knowledge]

[1M]

- 2. Describe the characteristics of a Vector processor.
- (C.O.NO.1) [Knowledge]
- 3. Define with suitable examples i) Private Clause ii) Critical Pragma

(C.O.NO.3) [Knowledge]

4. Sketch a complete Omega Network that connects 8 processors and 8 Memory Banks and show the route taken from processor 5 to memory bank 1.

(C.O.NO.1) [Knowledge]

#### Part B [Thought Provoking Questions]

### Answer the Question. Each Question carries eight marks.

(1Qx8M=8M)

5. Explain the effect of strided memory access on Processor Performance using a code fragment as an example. Also, Illustrate how to overcome the problem using suitable diagrams

(C.O.NO.1) [Comprehension]

# Part C [Problem Solving Questions]

#### Answer the Question. The Question carries twelve marks.

(1Qx12M=12M)

6. Consider a Shared Memory System with 2 cores and 2 caches as shown below.



| 1           | Time | Core 0                       | Core 1                       |
|-------------|------|------------------------------|------------------------------|
|             | Ō    | y0 = x;                      | yl = 3*x;                    |
|             | - Li | x = 7;                       | Statement(s) not involving x |
| And and and | 2    | Statement(s) not involving x | zl = 4*x;                    |

Core 0 and Core1 execute the above statements at the given time.

(C.O.NO.1) [Application]

Variable x is shared by the cores and variable  $y_0$  is private to core0 and variables  $y_1$  and  $z_1$  are private to core1.

a) Compute the value of x at time 3

[1M]

- b) Identify and explain any possible unpredictable behavior in the above scenario. [3M]
- c) Describe two Solutions to overcome this behavior.

[M8]

# SCHOOL OF ENGINEERING



**Year -**:2019 - 20

Course Code: CSE 305

Course Name: Parallel Computing

Program & Sem: B.Tech, 5

Date: 16/11/19

Time: 11 am -12 pm

Max Marks: 40

Weightage: 20%

# Extract of question distribution [outcome wise & level wise]

| Q.NO |                | Unit/Module Number/Unit /Module Title |    | Memory recall<br>type<br>[20M]<br>Bloom's Levels |   |   | provol<br>3] | ought<br>king typ<br>BM]<br>s Level | е  | Problem Solving<br>type<br>[12M] |   | g<br>Total<br>Marks |
|------|----------------|---------------------------------------|----|--------------------------------------------------|---|---|--------------|-------------------------------------|----|----------------------------------|---|---------------------|
|      | 3              | Module-4                              | 5  | h                                                | ( |   | (            | <u> </u>                            |    | -                                | A |                     |
|      | 1              | Module-2                              | 5  |                                                  |   |   |              |                                     |    |                                  |   | 5                   |
|      | 3              | Module-4                              | 5  | -                                                |   | - |              |                                     | -  |                                  |   | 5                   |
|      | 1              | Module-1                              | 5  |                                                  | - |   |              | -                                   | -  |                                  |   | 5                   |
|      | 1              | Module-2                              |    | -                                                |   | 8 | -            |                                     | _  |                                  |   | 5                   |
|      | _              | Module-2                              |    |                                                  |   |   |              |                                     | 12 |                                  |   | 8                   |
|      | Total<br>Marks |                                       | 20 |                                                  |   | 8 |              |                                     | 12 | -                                |   | 12<br>40            |

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

# **Annexure- II: Format of Answer Scheme**



## SCHOOL OF ENGINEERING

#### **SOLUTION**

Year -: 2019 - 20

Course Code: CSE 305

Course Name: Parallel Computing

Program & Sem: B.Tech, 5

1)vector registers

2) Vectorized pipelined functional units

2

Date: 27/9/19

Time: 11 am -12 pm

Max Marks: 40

Weightage: 20%

(4Qx5M=20)

|         |                                                                                                                                                                                                                      | ,                                    |                                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|
| Q<br>No | Solution                                                                                                                                                                                                             | Sch<br>em<br>e of<br>Ma<br>rki<br>ng | Max. Time required for each Questio n |
| 1       | #include <omp.h></omp.h>                                                                                                                                                                                             | 3+1+1                                | 5                                     |
|         | #pragma omp parallel {printf("Hello World from thread %d ",omp_get_thread_num());} printf(" the number of processors are %d",omp_get_num_proc(); printf(" the total number of threads are %d",omp_get_num_threads(); |                                      |                                       |

Part A

| 4) | ) Vector Instro<br>) Interleaved I<br>) Strided Mem                  | Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Expand each point – I mark for each feature | 8 |
|----|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------|---|
| Cı | rivate clause i<br>ragma omp pa<br>ritical pragma<br>perations on sk | ıranei (defa<br>ı – defines i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ault shar<br>the critic   | ed) (pri<br>cal regi | ivate i i`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 2.5+2.5                                     | 8 |
|    |                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ep vode voga ga gar.      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                             | 0 |
| 4  | (XX)                                                                 | Vision profitation (profitation |                           |                      | Challenter - 122 i al Marros,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 001<br>000 | 4                                           |   |
|    | 011 / / 010                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g West for equivalence in | none i               | Material Particular State Control of Sta | T CHARLES AND THE STATE OF THE | 011<br>010 |                                             | 8 |
|    | 1(x)<br>1(t)                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 4<br>4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100<br>101 |                                             |   |
|    |                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (                         |                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110        |                                             |   |

Part B

(1Qx8M=8)

| Q  |                                                                                                  |                      | ( I COVOIAI-O)         |
|----|--------------------------------------------------------------------------------------------------|----------------------|------------------------|
| No | Solution                                                                                         | Scheme of<br>Marking | Max. Time required for |
| 5  | Array – stored in row major order but data is accessed in column major order –in strided access. | 4+4                  | each Question<br>8     |
|    |                                                                                                  |                      |                        |
|    |                                                                                                  |                      |                        |

#### Part C

 $(Q \times M = Marks)$ 

| Q No | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Scheme of<br>Marking  | Max. Time required for each Question |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|
| 6    | a) undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a) 1M b)<br>3M c) 8 M | 12                                   |
|      | Note that this unpredictable behavior will occur regardless of whether the system is using a write-through or a write-back policy. If it's using a write-through policy, the main memory will be updated by the assignment x = 7. However, this will have no effect on the value in the cache of core 1. If the system is using a write-back policy, the new value of x in the cache of core 0 probably won't even be available to core 1 when it updates z1.  Clearly, this is a problem. The programmer doesn't have direct control over when the caches are updated, so her program cannot execute these apparently innocuous statements and know what will be stored in z1. There are several problems here, but the one we want to look at right now is that the caches we described for single processor systems provide no mechanism for insuring that when the caches of multiple processors store the same variable, an update by one processor to the cached variable is "seen" by the other processors. That is, that the cached value stored by the other processors is also updated. This is called the cache coherence problem.  c) Snoopy cache and Directory based cache  There are two main approaches to insuring cache coherence: snooping cache coherence and directory-based cache coherence. The idea behind snooping comes from bus-based systems: When the cores share a bus, any signal transmitted on the bus can be "seen" by all the cores connected to the bus. Thus, when core 0 updates the copy of x stored in its cache, if it also broadcasts this information across the bus, and if core 1 is "snooping" the bus, it will see that x has been updated and it can mark its |                       |                                      |
|      | copy of x as invalid. This is more or less how snooping cache coherence works. The principal difference between our description and the actual snooping protocol is that the broadcast only informs the other cores that the <i>cache line</i> containing x has been updated, not that x has been updated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                      |

|   | Directory based cache – the system maintains a directory of information about each cache line – using presence bits that is used to identify the processor that updates a shared variable and references to the shared variable will be served by this processor. |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| i | of served by this processor.                                                                                                                                                                                                                                      |  |
|   |                                                                                                                                                                                                                                                                   |  |
|   |                                                                                                                                                                                                                                                                   |  |

•





| Roll No |   |  |   |  |   |  |   |
|---------|---|--|---|--|---|--|---|
|         | l |  | 1 |  | 1 |  | ı |

# PRESIDENCY UNIVERSITY BENGALURU

# **SCHOOL OF ENGINEERING**

#### **END TERM FINAL EXAMINATION**

Semester: Odd Semester: 2019 - 20

Date: 20 December 2019

Course Code: CSE 305

Time: 9:30 AM to 12:30 PM

Course Name: PARALLEL COMPUTING

Max Marks: 80

Program & Sem: B.Tech (CSE) & V (DE-I)

Weightage: 40%

#### Instructions:

(i) Read the all questions carefully and answer accordingly.

#### Part A [Memory Recall Questions]

#### Answer all the Questions. Each Question carries 5 marks.

(6Qx5M=30M)

1. Explain the two different types of parallelism with examples

(C.O.No.1) [Knowledge]

- Describe how the addition of a cache memory will help in improving Processor Performance with an example (C.O.No.1) [Knowledge]
- 3. Sketch a complete Omega Network that connects 8 processors and 8 Memory Banks and show the route taken from processor 3(011) to memory bank 7 (111)

(C.O.No.1) [Knowledge]

4. Explain Ian Foster's Design methodology for parallel algorithm design

(C.O.No.2) [Knowledge]

- 5. State Amdahl's law List the formulae for the calculation of Speedup and Efficiency for a parallel System. (C.O.No.1) [Knowledge]
- 6. Write the Syntax for the MPI functions MPI\_Init and MPI\_Finalize .Describe the functions and their arguments. (C.O.No.3) [Knowledge]

#### Part B [Thought Provoking Questions]

#### Answer all the Questions. Each Question carries 14 marks.

(3Qx14M=42M)

7. a) i) Use OpenMP pragmas to make the following loop parallel and explain how it is executed in parallel.

for( 
$$i=0$$
;  $i < n$ ;  $i++$ )  
a[  $i$  ] = foo(  $i$  );

[4M] (C.O.No.3) [Comprehension]

```
ii)
```

```
for( i=0; i < n; i++) {
    a[i] = foo(i);
    if( a[i] < b[i])
        break;
}
```

[4M] (C.O.No.3) [Comprehension]

b. Describe the circumstances under which the "firstprivate" and "lastprivate " clauses are used in parallel programming using OpenMP- explain how they can be used with suitable examples

[6M] (C.O.No.3.) [Comprehension]

[14M] (C.O.No.3.) [Comprehension]

8. Mr. Smith wants to add the data stored in an array **a of size N** (where N > 10,000) on a system that has 4 processors and default number of threads is 4. All the elements of the array are initialized to 1. He has written the code segment given below and obtained the output 130796.

```
#include<stdio.h>
#include<omp.h>
#define SIZE 40000

void main(){

int a[SIZE], i, sum=0;

for(i=0; i<SIZE; ++)
    a[i]=1;

#pragma omp parallel
{
  for(i=0; i<SIZE; i++)
    sum = sum + a[i];
}
print("sum is %d \n",sum);</pre>
```

i) What is the expected output?

- ii) Explain what modification should be done to get the expected output?
- 9. a) Write a complete C program using MPI

[4M] (C.O.No.3) [Application]

- i) that will print the message "Parallel Computing" from each process along with their respective process ids
- ii) that will print the total number of processes
- iii) Give the command line for the compilation and execution of your program by creating 4 processes

b) Apply the steps of Foster's Design algorithm to the boundary value problem of calculating the temperature at any point of the rod at any point in time given that the rod is made up of uniform material, surrounded by a blanket of insulation and the ends of the rod placed in an ice bath having temperature 0° C.

[10M] (C.O.No.2) [Application]

### Part C [Problem Solving Questions]

#### Answer the Question. The Question carries 8 marks.

(1Qx8M=8M)

- 10. Suppose you are given a Parallel System with 3 cores and a serial program with T serial =20 seconds. Further suppose that 90% of this serial program is parallelized.
  - i) Compute the overall parallel-runtime (T parallel) and Speedup under ideal conditions.
  - ii) Explain how Speedup is affected when the number of cores are very large.

(C.O.No.3.) [Application]

emperature at any point of the rod of any point in time given lost the rod is made up of uniform paterial, surrounded by a blanket of insulation and the ends of the rod placed in an los being surry lumph where EEE.



# **SCHOOL OF ENGINEERING**

#### **END TERM FINAL EXAMINATION**

## Extract of question distribution [outcome wise & level wise]

| Q.NO | C.O.NO<br>(% age<br>of CO) | Unit/Module<br>Number/Unit<br>/Module Title | Memory recall<br>type<br>[Marks allotted]<br>Bloom's Levels | Bloom's Levels | Problem Solving type [Marks allotted] | Total<br>Marks |
|------|----------------------------|---------------------------------------------|-------------------------------------------------------------|----------------|---------------------------------------|----------------|
|      |                            |                                             | K                                                           | С              | Α                                     |                |
| 1    | 1                          | 1                                           | 5                                                           |                |                                       | 5              |
| 2    | 1                          | 2                                           | 5                                                           |                |                                       | 5              |
| 3    | 1                          | 2                                           | 5                                                           |                |                                       | 5              |
| 4    | 2                          | 3                                           | 5                                                           |                |                                       | 5              |
| 5    | 1                          | 3                                           | 5                                                           |                |                                       | 5              |
| 6    | 3                          | 4                                           | 5                                                           |                |                                       | 5              |
| 7    | 3                          | 4                                           |                                                             | 14             |                                       |                |
| 8    | 3                          | 4                                           |                                                             | 14             |                                       |                |
| 9    | 2                          | 3                                           |                                                             |                | 14                                    |                |
| 10   | 1                          | 3                                           |                                                             |                | 8                                     |                |
|      | Total Ma                   | irks                                        | 30                                                          | 28             | 22                                    | 80             |

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

Commend: Paut-B. 7th 0° posse the students & Idulytu problem.

enputs grent the faculty menber

#### **Format of Answer Scheme**



# SCHOOL OF ENGINEERING

#### SOLUTION

Semester: Odd Sem. 2019-20

Course Code: CSE 305

Course Name: Parallel Computing

Program & Sem: B.Tech (CSE) & V

Date: 20 Dec 2019

Time: 9:30 AM to 12:30 PM

Max Marks: 80

Weightage: 40%

Part A

 $(6Q \times 5M = 30Marks)$ 

| Q      | Solution                                                                                                                               | Scheme       | Max. Time required for |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|
| N<br>o |                                                                                                                                        | of<br>Markin | each<br>Question       |
|        |                                                                                                                                        | g            |                        |
| 1      | Data and Functional parallelism (dividing data) dividing the task) examples                                                            | 2.5 +2.5     | 7                      |
| 2      | Using cache, time taken for the execution of a program is reduced. Explanation can be given using cache mappings- with hits and misses | 2.5 +2.5     | 7                      |

| 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 +1   | 7 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
|   | TXX}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - ·    | - |
|   | (8)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |   |
|   | ver en end of a first transfer of the end o |        |   |
|   | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |   |
|   | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |   |
|   | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   | tan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |   |
|   | 101<br>168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |   |
|   | \$58\$ LUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |   |
|   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   | 3 to 7 (011 xor 111) =100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |   |
|   | Route from 3 to 6, 6 to 7, 7 to 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
| 4 | Foster's design methodology – Partitioning, Communication,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5      | 7 |
|   | Agglomeration and Mapping Amdahl's law. It says, roughly, that unless virtually all of a serial program is paral-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4.4  |   |
| 5 | lelized, the possible speedup is going to be very limited—regardless of the number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3+1+1  | 5 |
|   | cores available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
| : | eur .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   | speedup of a parallel program t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   | $S = \frac{T_{\text{scrid}}}{T_{\text{coredical}}},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |   |
|   | $T_{ m parallel}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|   | $c = \left(\frac{T_{\text{cond}}}{T_{\text{cond}}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |   |
|   | $E = \frac{S}{p} = \frac{\left(\frac{T_{\text{sortal}}}{T_{\text{parallel}}}\right)}{p} = \frac{T_{\text{sortal}}}{p \cdot T_{\text{parallel}}}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|   | $p = p \cdot I_{parallel}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |   |
| 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Each 1 | 8 |
| 6 | The first MPI function call made by every MPI process is the call to MPI_Irit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laciii | 0 |
|   | which allows the system to do any setup needed to handle further calls to the MPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|   | library. The call to MPI_Init does not have to be the first executable statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |   |
|   | of the program. In fact, it does not even have to be located in function main. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |   |
|   | only requirement is that MPI_Init be called before any other MPI function.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |   |
|   | Note that all MPI identifiers, including function identifiers, begin with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |   |
|   | prefix MPT, followed by a capital letter and a series of lowercase letters and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
|   | underscores. All MPI constants are strings of capital letters and underscores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |   |
|   | beginning with MPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   | MPI_Init (&argc, &argv);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   | After a process has completed all of its MPI library calls, it calls function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |   |
|   | MFI_Finalize, allowing the system to free up resources (such as memory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |   |
|   | that have been allocated to MPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |
|   | <pre>MPI_Finalize();</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |   |
|   | return 0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |   |
|   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |   |

| Function check_dirduit, passed the ID number of a process and an inte-                 |  |
|----------------------------------------------------------------------------------------|--|
| ger z, first extracts the values of the 16 inputs using the macro EXTRACT BITS.        |  |
| Element v[0] corresponds to input a, element v[1] corresponds to input b,              |  |
| and so on. Calling function check_circuit with values of z ranging from 0              |  |
| through 65,535 generates all 216 combinations of values.                               |  |
| After function check_circuit has determined the values of the 16 inputs.               |  |
| it checks to see if they result in the circuit having the output 1. If so, the process |  |
| prints the values of a through p.                                                      |  |

## Part B

 $(3Q \times 14M = 42 Marks)$ 

| Q<br>No | Solution                                                                                                                                                                                                                                                                                                                                                                                                    | Scheme of<br>Marking               | Max. Time required for each Question |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| 7       | <ul> <li>a) The loop can be executed parallel by using #pragma omp parallel for – describe the parallel region</li> <li>b) it cannot be executed in parallel as it has a break statement and the no: of iterations cannot be known in advance required by the run time env.</li> <li>c) Critical –avoid racing Single – when statements are to be executed by only one process- explain ,example</li> </ul> | 4+4+6                              | 12                                   |
| 8       | #pragma omp for for(i=0;i <size;i++) #pragma="" critical="" omp="" partial="" psum="psum+a[i];" sum="sum+psum;&lt;/td" synchronize="" the="" to="" up=""><td>Syntax – 4  Code + explanation- 10</td><td>15</td></size;i++)>                                                                                                                                                                                 | Syntax – 4  Code + explanation- 10 | 15                                   |
| 9       | #Include (Stdic.F) #Include (Spi.ft)  int main(void)       int my_rank. coom_sz;  MAILIN(t(UJLE. NULE):     MAILComm_size(MAILCOMM_WORLD. &comm_sz);     MAILComm_rank(MAILCOMM_WORLD. &my_rank):      printf(" parallel computing from process %d of %d",my_rank,comm_sz);  MAILCinalize(                                                                                                                  | 4                                  | 10                                   |
|         | return 3:<br>3 /* GBin */  b)                                                                                                                                                                                                                                                                                                                                                                               | 10                                 | 15                                   |



Even if enough processors were available, it would be impossible to compute every task shown in Figure 3.11a concurrently, because the tasks computing rod temperatures later in time depend upon the results produced by tasks computing rod temperatures earlier in time. This is made plain by the vertical paths of channels stretching from the bottom tasks to the top tasks. There is no point in maintaining the illusion of multiple tasks when they must be performed sequentially. Let's agglomerate all the tasks associated with each point in the rod, that is, tasks in the same column in Figure 3.11a.

The resulting task/channel graph, shown in Figure 3.11b, is much less complicated. Now we have a linear array of tasks, each communicating solely with its neighbor(s). Each is responsible for computing the temperature at a particular grid point for all time steps.

However, even this graph is likely to have far more tasks than we need to keep all of our processors fully occupied, since in a real problem the number of rod segments would be large. We can use the decision tree of Figure 3.7 to come up with a mapping strategy. The number of tasks is static (left branch), the communication pattern among them is regular (left branch), and each task performs the same computations (left branch). Hence a good strategy is to create one task per processor, agglomerating primitive tasks so that computational workloads are balanced and communication is minimized. Associating a contiguous piece of the rod with each task (Figure 3.11c) preserves the simple nearest-neighbor communication between tasks and eliminates unnecessary communications for those data points within a single task.

#### Part C

 $(1Q \times 8M = 8Marks)$ 

| Q<br>No | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scheme<br>of<br>Marking | Max.<br>Time<br>required<br>for each<br>Question |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|
| 10      | cores available. Suppose, for example, that we're able to parallelize 90% of a serial program. Further suppose that the parallelization is "perfect," that is, regardless of the number of cores $p$ we use, the speedup of this part of the program will be $p$ . If the serial run-time is $T_{\rm serial} = 20$ seconds, then the run-time of the parallelized part will be $0.9 \times T_{\rm serial}/p = 18/p$ and the run-time of the "unparallelized" part will be $0.1 \times T_{\rm serial} = 2$ . The overall parallel run-time will be | 2+2+4                   | 8                                                |
|         | $T_{\text{parallel}} = 0.9 \times T_{\text{serial}}/p + 0.1 \times T_{\text{serial}} = 18/p + 2,$ and the speedup will be $S = \frac{T_{\text{serial}}}{0.9 \times T_{\text{serial}}/p + 0.1 \times T_{\text{serial}}} = \frac{20}{18/p + 2}.$                                                                                                                                                                                                                                                                                                    |                         |                                                  |
|         | Now as $p$ gets larger and larger, $0.9 \times T_{\text{serial}}/p = 18/p$ gets closer and closer to 0, so the total parallel run-time can't be smaller than $0.1 \times T_{\text{serial}} = 2$ . That is, the denominator in $S$ can't be smaller than $0.1 \times T_{\text{serial}} = 2$ . The fraction $S$ must therefore be smaller than $T_{\text{serial}}/2$                                                                                                                                                                                |                         |                                                  |