		 	 ,	 	 		 	
1								
Dall Na		į						
non No.	- 1						[
1								
		 	 Ĺ	 		i		
<u> </u>		 	 	 				

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem: Odd Sem 2019-20

Course Code: CSF212

Course Name: ANALYSIS OF ALGORITHMS

Program & Sem: B. Tech (CSE) & V

Date: 30.09.2019

Time: 2:30PM to 3:30PM

Max Marks: 40

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries one mark.

(4Qx1M=4M)

1. The complexity or Bubble sort algorithm is

(C.O.NO.1)[Knowledge]

- a. O(n)
- b. $O(\log n)$
- c. $O(n^2)$
- d. $O(n \log n)$
- 2. in linear search algorithm the Worst case occurs when

(C.O.NO.1)[Knowledge]

- a. The item is somewhere in the middle of the array
- b. The item is not in the array at all
- c. The item is the last element in the array
- d. The item is the last element in the array or is not there at all
- 3. Two main measures for the efficiency of an algorithm are

(C.O.NO.1)[Knowledge]

- a. Processor and memory
- b. Complexity and capacity
- c. Time and space
- d. Data and space

4. Which of the following case does not exist in complexity theory

(C.O.NO.1)[Knowledge]

- a. Best case
- b. Worst case
- c. Average case
- d. Null case
- 5. Match the following with there respective efficiencies:

(5Qx1M=5M)

a) Linear Search	
b) Tower of Honai	
c) Selection Sort	
d) String Matching	

e)Knap Sack

iv) 2^n v) n

i) (2^n)-1 ii) n^2 iii) nm

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries seven marks.

(3Qx7M=21M)

- 6. Design selection sort algorithm to perform sorting and analyze its time efficiency. (C.O.NO.1)[Knowledge]
- 7. Explain the concept of various asymptotic notations, with examples?

(C.O.NO.1)[Knowledge]

8. Suggest a general plan for analyzing the efficiency of recursive algorithm Tower of honai? (C.O.NO.1)[Knowledge]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries five marks.

(20x5M=10M)

9. Apply Exhaustive Search procedure to find the shortest path for the given Travelling Salesperson Problem (C.O.NO.2)[Comprehension]

10. Find the solution to the given Knapsack problem using exhaustive search method.

Knapsack capacity W=5 (C.O.NO.2.)[Comprehension]

<u>item</u>	<u>weight</u>	<u>value</u>
1	2	120
2	1	100
3	3	200
4	2	150

SCHOOL OF Engineering

GAIN MORE KNOWLEDGE REACH CREATER HEIGHTS

Semester: 5th SEM

Course Code: CSE212

Course Name: Analysis of

Algorithms

Date: 30/09/2019

Time: 2:30 to 3:30

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	type arks a	recall e allotted] Levels	pro [Ma	rks a	g type llotted]	Problem Solving type [Marks allotted]		Total Marks	
1	1	1	1*1	=	1							1
2	2	2	1*1	=	1							1
3	1	1	1*1	=	1							1
4	1	1	1*1	=	1							,
5	1	1	5*1	=	5							1
6	2	2	7*1	=	7							5
7	1	1	7*1	=	7				NI New York Change Company Control			7
8	1	1	7*1	=	7							7
9	2	2				5*1	=	5				5
10	2	2				5*1	=	5				5
	Total Marks				30			10				40

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I here certify that All the questions are set as per the above lines Sunil kumar R M]

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: 5th sem

Course Code: CSE212

Course Name:

Date: 30/09/2019

Time: 2:30 to 3:30

Max Marks:40

Weightage: 20%

Part A

 $(Q \times M = Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	C	MCQ	2
2	D	MCQ	2
3	C	MCQ	2
4	D	MCQ	2
5	V,I,II,III,IV	Marks to be given if the answer is right.	2

Part B

 $(Q \times M = Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
6	Selection sort Algorithm ALGORITHM SelectionSort($A[0n-1]$) //Sorts a given array by selection sort //Input: An array $A[0n-1]$ of orderable elements //Output: Array $A[0n-1]$ sorted in ascending order for $i \leftarrow 0$ to $n-2$ do $min \leftarrow i$ for $j \leftarrow i+1$ to $n-1$ do if $A[j] < A[min]$ $min \leftarrow j$ swap $A[i]$ and $A[min]$	Definition -2 marks Algorithm-4 marks Efficiency -1 Marks	10
7	Asymptotic notations	2 marks each for big O, big omega and big theta(graph and expression) 1 marks for example	10

8	Tower of Honai		Definition -2 marks	10
	Algorithm		Algorithm-4 marks	
			Efficiency -1 Marks	
	START			
	Procedure Hanoi(disk, source, dest, aux)			
	IF disk == 1, THEN			
1	move disk from source to dest			
	ELSE			
	Hanoi(disk - 1, source, aux, dest)	// Step 1		
1	move disk from source to dest			
	Hanoi(disk - 1, aux, dest, source) END IF	// Step 3		
	4			
ł	END Procedure			
	STOP			

Part C

 $(Q \times M = Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
9	Travelling Sales Person	Problem definition -1m Problem solution for writing all steps-4m	10
10	Knapsack	Problem definition -1m Problem solution for writing all steps4m	10

Roll No		A THURSDAY	A SERVICE AND A SERVICE AND ASSESSMENT ASSES			Personal Factor's Section of the		 -
110111110								

Date: 18.11.2019

Sem & AY: Odd Sem 2019-2020

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

Test - 2

Col	urse Code: CSE 212 urse Name: ANALYSIS (gram &Se m: B.Tech (C		Time: 2.30 PM to 3.30 PM Max Marks: 40 Weightage: 20%	
	ructions: Answer all the question	ns.		
german de german en	Pai	rt A (Memory Red	call Questions)	
Ans	swer all the Question	s. Each Question	n carries one marks	. (9Qx1M=9M)
II. Ta a continuo IV. II. II. Continuo IVI. III. Ta a continuo IVII. III. III. Continuo IVII. III. III. III. III. III. III. II	The running time of quital. Selection of pivot election of pivot election of pivot election. Number of passes The worst case running are: a. \(\text{O}(n \log n)\), \(\text{O}(n \log n)\) and the complexity of Binal along the pivotes of a Quick Sortial algorithm, then use metally a consider a Quick Sortial along the development of the development of the time complexity of a elements is known to the development of the time complexity of a elements is known to	ck sort depends of the ments itimes of Insertion i) and Θ(n²) ii Θ(n log n) ry search algorithm implementation is edian as pivot. With the computing the training training the training trai	s of divide-and-conquer. Quick sort on the selection of b. Number of input d. Arrangements of the sort, Merge sort and b. Θ(n²), Θ(n²) and θ d. Θ(n²), Θ(n log n) on is c. Ο(n²) that finds median of where we first find mat will be the worst c. O(n Logn Log mming the value of the control of the contr	d. All of above ne elements Quick sort, respectively, o(n Log n) and Θ(n²) d. O(n log n) an unsorted array. Now nedian using the above case time complexity of gn) d. O(nLogn) an optimal solution is
8	a. O(nlogn) b	o. O(n ^{3/2})	c. O(n ³)	d. O(n)

- VIII. Which of the following algorithm design technique is used in finding all pairs of shortest distances in a graph?
 - a. Dynamic programming
- b. Backtracking

c. Greedy

- d. Divide and Conquer
- IX. What is the time complexity of Floyd–Warshall algorithm to calculate all pair shortest path in a graph with n vertices?
 - a. O(n^2logn)
- b. Theta(n^2logn)
- c. Theta(n^4)
- d. Theta(n^3)

Part B (Thought Provoking Questions)

Answer all the Questions. Each Question carries seven marks.

(3Qx7M=21M)

- 2. Demonstrate the procedure of merge sort algorithm and apply it to sort the list S, O, R, T, I, N, G in alphabetical order. (C.O.NO.3)[Comprehension]
- 3. Compute the time efficiency of Binomial Co-efficient algorithm and find Binomial Co-efficient for the value C=6, k=4. (C.O.NO.4)[Comprehension]
- 4. Demonstrate the procedure to find the solution to the given Knapsack problem using dynamic programming. (C.O.NO.4)[Application]

item	WEILE	value		
2		\$20		
The second second	, political property of the control	\$15	capacity	M su fi
å,		540		
5	5	\$50		

Part C (Problem Solving Questions)

Answer the Question. The Question carries ten marks.

(1Qx10M=10M)

- 5. (a) Explain the procedure of dynamic programming and generate the Fibonacci series using that. (C.O.NO.4)[Application]
 - (b) Apply Floyd's algorithm for the following weighted digraph to find the shortest path of all pairs. (C.O.NO.4)[Application]

SCHOOL OF ENGINEERING

GAIN MORE KNOWLEDGE

Semester: 5Th

Course Code: CSE212

Course Name: Analysis of algorithms

Date: 18-11-19

Time: 1 Hour

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO	Unit/Module Number/Unit /Module Title			Bloom's Levels			Problem Solving type [Marks allotted]			Total Marks	
				K			С			Α		
1 to 5	3			4	L1							5
5 to 9	4	IV		5	L1							4
10	3	III					7	L2				7
11	4	IV					7	L2			,	7
12	4	IV	•			-	7	L3				7
13(a)	3	III								5	L3	5
13(b)	4	IV								5	L3	5
	Total Marks			9			21			10		40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF -ENGINEERRING

SOLUTION

Semester: 5TH

....

Course Code: CSE 212

Course Name: Analysis of algorithms

Date:

Time: 1 HOUR

Max Marks: 40

Weightage: 20%

Part A

 $(9Q \times 1M = 9 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
Part	Multi choice	9	15 Minutes
A	1-c, 2-a, 3-d, 4-d, 5-b, 6-b, 7-c, 8-a, 9-d,		

Part B

 $(2Q \times 7M = 14 \text{ Marks})$

 $(1Q \times 6M = 6 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
10	a. Procedure	2	11 Minutes
	b. Solution & Time complexity	5 (4+1)	
11	a. Algorithm+ Time complexityb. C(6,4) Solution	3 4	11 Minutes

12	a) Procedure	2	9 Minutes
	b) Solution	5	

Part C

 $(1Q \times 10M = 10Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
13(a)	DP Procedure	2	7 Minutes
()	Algorithm-	2	
	Example series	1	
b)	Procedure of Floyd's problem	1	7 Minutes
	Solution	4	

Roll No.							
			!				

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Sem. 2019-20

Date: 26 December 2019

Course Code: CSE 212

Time: 9:30 AM to 12:30 PM

Course Name: ANALYSIS OF ALGORITHMS

Max Marks: 80

Program & Sem: B.Tech (CSE) & V

Weightage: 40%

Instructions:

(i) Answer all questions.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 4 marks.

(5Qx4M=20M)

1. Explain the concept of various asymptotic notations, with examples?

(C.O.No.1) [Knowledge]

- 2. Define Master theorem and Calculate the time complexity for the given recurrence relation.
 - a. $T(n) = 4T(n/2) + n^2$
 - b. $T(n)=4T(n/2) + n^3$
 - c. T(n)=4T(n/2)+n

(C.O.No.3) [Knowledge]

3. Define sequential search with an example. Calculate the time efficiency.

(C.O.No.2) [Knowledge]

- Define decision tree? Obtain the decision tree for 3 numbers to sort the elements using Insertion Sort. (C.O.No.5) [Knowledge]
- 5. Explain Krushkal's algorithm.

(C.O.No.4) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

6. Explain with example a sorting algorithm that uses divide and conquer technique which Splits the problem size by considering position. Give the corresponding algorithms an analyze the time complexity. (C.O.No.3) [Comprehension]

SCHOOL OF ENGINEERING

Semester: Odd Semester: 2019-20

Date: 26 December 2019

Course Code: CSE 212

Time: 9:30 AM to 12:30 PM

Course Name: Analysis of Algorithms

Max Marks: 80

Program & Sem: B.TECH & 5th

Weightage: 40%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels		type provoking type [Marks allotted] [Marks allotted] Bloom's Levels Bloom's Levels		Problem Solving type [Marks allotted]			Total Marks	
				K		С			A		
1	CO1 .	Module 1	4	K							
2	CO3	Module 3	4	K							20 Marks
3	CO2	Module 2	4	K							
4	CO5	Module 5	4	K							
5	CO4	Module 4	4	K							The second secon
6,	CO3	Module 3			10	С					
7	CO4	Module 4			10	C					30 Marks
8	CO5	Module 5						10	A		The second secon
9	CO4	Module 4			10	C					30 Marks
10	CO4	Module 4			10	C					
11	CO3	Module 3			10	С				-	
	Total Marks		20		50			10			80 Marks

SCHOOL OF ENGINEERING

SOLUTION

Date: 26 December 2019

Time: 3 Hour

Max Marks: 80

Weightage: 40%

Semester: 5TH

Course Code: CSE 212

Course Name: Analysis of Algorithms

Part A

(5Qx4=20 Marks)

No	Solution	Scheme of Marking	Max. Time required for each Question
1	Asymptotic Notations types: 3 types are: 1. Big Oh(O) • $O(g(n))$: class of functions $f(n)$ that grow no faster than $g(n)$ • $t(n) <= c^* g(n)$, where $c > 0$ and $n >= 1$ 2. Big Omega (Ω) • $\Omega(g(n))$: class of functions $f(n)$ that grow at least as fast as $g(n)$ • $t(n) >= c^* g(n)$, where $c > 0$ and $n >= 1$ 3. Big Theta(Θ)	1*3=3	15 Minutes

	Applications: minimum spanning tree (MST) single-source shortest paths simple scheduling problems Huffman codes	1	
	ALGORITHM Prim(G) //Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = V$, E_{-} //Output: ET , the set of edges composing a minimum spanning tree of G $VT \leftarrow \{v \ 0\}$ //the set of tree vertices can be initialized with any vertex $ET \leftarrow \text{NULL}$ for $i \leftarrow 1$ to $ V = 1$ do find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u) such that v is in VT and u is in $V - VT \ VT \leftarrow VT \cup \{u^*\}$ $ET \leftarrow ET \cup \{e^*\}$ return ET .	6	
	Time efficieny is O(n ²) for weight matrix representation of graph and array implementation of priority queue O(m log n) for adjacency lists representation of graph with n vertices and m edges and min-heap implementation of the priority queue	2	
8	Definition for Backtracking: A given problem has a set of constraints and possibly an objective function. Algorithm	1	20 Minutes
	State space tree for 4 Queens problem	4	
		5	

Ì	 Divide instance of problem into two or more smaller instances Solve smaller instances recursively Obtain solution to original (larger) instance by combining these solutions 	2	20 Minutes
	Any Example	1	
	Sorting the elements in tree structure	7	
	83297154 83297154 7154 833 29 71 5 4 8 3 2 9 7 1 5 4 17 45 1234578 9		