

Roll No.

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem. 2019-20

Date: 27.09.2019

Course Code: CSE 210

Time: 2:30PM to 3:30PM

Course Name: OPERATING SYSTEMS

Max Marks: 40

Programme & Sem: B.Tech. (CSE) & V

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer both the Questions. Each Question carries seven marks. (2Qx7M=14M)

1. Describe the evolution of operating systems.

(C.O.NO.1) [Knowledge]

2. Explain direct and indirect communications of message passing system.

(C.O.NO.2) [Comprehension]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries four marks.

(3Qx4N=12M)

3. List the functionalities of various system components of Operating System

(C.O.NO.1) [Knowledge]

4. Differentiate between user level and kernel level threads.

(C.O.NO.2) [Comprehension]

5. How can we prevent users from accessing other users' programs and data?

(C.O.NO.1) [Knowledge]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries seven marks. (2Qx7M=14M)

6. "Operating System is a Resource Manager and Control Program" justify this statement with suitable functionality of Operating System.

(C.O.NO.1) [Knowledge]

7. Explain the difference between short-term, medium-term and long-term schedulers with a neat sketch.

(C.O.NO.2) [Comprehension]

GAID HOST ENGINEERS

Semester: 5 TH

Course Code: CSE 210

Course Name: Operating Systems

Date: 27-09-2019

Time: 1Hr

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	type irks a	recall lotted] Levels	prov [Mai	rks all	g type lotted]		olem So type irks allo C	-	Total Marks
4 0	A	A					·	,		· · · · · ·		,
1, 3, 5, 6	1	1	7	-	000000000000000000000000000000000000000	4	4		7			22
2,4,7	2	2	7	i		4		:	7			18
			:									
								•				
			***				i :					
:	Total Marks		14				12		14			40

K =Knowledge Level C = Comprehension Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must

be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

Semester: 7TH

Course Name-HCI

SCHOOL OF ENGINEERING

SOLUTION

Date: 1-10-19

Time: 1 HOUR

Course Code: CSE 218 Max Marks: 40

Weightage: 20%

Part A

 $(Q \times M = Marks)$

Describe the evolution of operating systems. a) Batch Processing b) Multiprogramming c) Time sharing system d) Parallel system e) Distributed system	10 min
b) Multiprogramming c) Time sharing system Total - 7 marks d) Parallel system e) Distributed system	
b) Multiprogramming c) Time sharing system d) Parallel system e) Distributed system	
d) Parallel system e) Distributed system	
e) Distributed system	
f) Real time system	
2 Explain direct and indirect communications of 3+4 = 7	10 min
message passing system.	

Part B

 $(Q \times M = Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
3	List the functionalities of various system components of Operating System.	4x1=4	5 min
	Functions of at least 4 system components of OS		
4	Differentiate between user level and kernel level threads.	2 marks 2 marks	5 min

5	How can we prevent users from accessing other:	4M	5 min
	users' programs and data?		
	Ans: Introduce base and limit registers that hold the smallest legal physical memory address, and the size of the range, respectively. As a user's job is started, the operating system loads these registers; if the program goes beyond these addresses, it is aborted. If another job starts up, these registers are reset for the new job.		

Part C

 $(Q \times M = Marks)$

			······································
Q No	Solution	Scheme of Marking	Max. Time required for each Question
6	"Operating System is a Resource Manager and Control Program" justify this statement with suitable functionality of Operating System. a. Justification for Resource Manager	4+3 = 7 M	10 min
1	b. Justification for Control Program	1	
7	Explain the difference between short-term, medium- term and long-term schedulers with a neat sketch. a. Diagram b. Short-term scheduler c. Medium-term scheduler d Long-term scheduler	1 ±2+2+2 = 7M	10 min

Roll No.	Roll No.											
----------	----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Date: 16.11.2019

Course Code: CSE 210

Time: 2:30 PM to 3:30 PM

Course Name: OPERATING SYSTEMS

Max Marks: 40

Program & Sem: B.Tech (CSE) & V

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer both the Questions. Each Question carries seven marks.

(2Qx7M=14M)

1. Describe the differences between preemptive scheduling and non-preemptive scheduling.

(C.O.NO.3) [Knowledge]

2. Explain Peterson's solution for achieving mutual exclusion.

(C.O.NO.4) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries five marks.

(3Qx5M=15M)

3. Define Scheduler? Consider the following set of processes, with the arrival times and the CPU burst times given in milliseconds.

Process	Arrival-Time	Burst-Time
P1	0	5
P2	1	3
P3	2	3
P4	4	1

What is the average turnaround time and average waiting time for these processes with the preemptive shortest remaining processing time first (SRTF) algorithm?

(C.O.NO.3) [Comprehension]

4. Explain readers & writers problem? Give its solution with semaphore.

(C.O.NO.4) [Comprehension]

5. Most round-robin schedules uses a fixed size quantum. Give an argument in favor of a small quantum. Now give an argument in favor of a large quantum. Compare and contrast the types of systems and jobs to which the argument apply.

(C.O.NO.3) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries eleven marks.

(1Qx11M=11M)

6. Consider the following set of process, with the length of the CPU-burst time given in milliseconds: (C.O.NO.3) [Comprehension]

Process	Burst-Time	Priority
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

The processes are assumed to have arrived in the order p1, p2, p3, p4, p5, all at time 0.

- a) Draw four Gantt charts illustrating the execution of these process using FCFS, SJF, a non-preemptive priority (a smaller priority number implies a higher priority), and RR (quantum=3) scheduling.
- b) What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c) What is the waiting time of each process for each of the scheduling algorithms in part a?
- d) Which of the scheduling algorithm in part a results in the minimal average waiting time (over all processes)?

SAIS MOST RADVATEDCE EARD OFFATER RECENTS

Semester: 5 TH

Course Code: CSE 210

Course Name: Operating Systems

Date: 16-11-2019

Time: 1Hr

Max Marks: 40

Weightage: 20%

Extract of guestion distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	type	recali lotted] _evels	prov [Mar	ks all	type		olem So type arks allo C	Total Marks
1, 3, 6	3	3	7			5			11		23
2,4,5	4	4	7			10					17
	Total Marks		14			15			Am.		40

K = Knowledge Level C = Comprehension Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SOLUTION

Semester: 5TH

Date: 5-11-19 **Time**: 1 HOUR

Course Code: CSE 218

Max Marks: 40

Course Name- OPERATING SYSTEM

Weightage: 20%

Part A

 $(Q \times M = Marks)$

Q No	Solu	ıtion	Scheme of Marking	Max. Time required for each Question
1. 2	non-preemptive schedu	eemptive scheduling and ling in terms of stalling y, starvation, resource	7x1=7	10 min
2	flag[0]= true; turn= 1; while (flag[1] && hurn == 1) /* do nothing */ /* Critical section*/ Flag[0]=talse;	_p1: : fiag[1]= true; turn= 0; while (flag[0] && turn == 0); /* do nothing)/ /* critical section*/ flag[1]=false;	Explanation – 3M Pseudo code – 4M	10 min

Part B

 $(Q \times M = Marks)$

Q No			Solutio	n		Scheme of Marking	Max. Time required for each Question
3	They show on gnatt c	-	P4	P3 and turnarou	P1 und time based	5x1=5	8 min
4	They she	ould expl nd give p			vith reader oper	Explanation-2M Pseudo code -3M	8 min
5	suppress	sed with loould expla	ot of conte	behaves li xt switchin nimal QT a	•	Explanation-2M Pseudo code -3M	8 min

				, ,	,
Q No		Solution		Scheme of Marking	Max. Time required for each Question
6	Consider the follength of the CP milliseconds:			For four gnatt chart – 4M Waiting time for all processes – 3M	16 min
	P1 P2 P3	10 1	Priority 3 1 3	Turnaround time for all processes – 3M Best algorithm – 1M	
	P4 P5	5	2		
	_	esses are assun the order pl,	ned to have p2, p3, p4, p5, all		
	execution SJF, a nor	of these procen-preemptive p	ts illustrating the ess using FCFS, priority (a smaller		
	and RR (c	quantum=3) sc	a higher priority), heduling. nd time of each		
	algorithm	or each of the s s in part a? s the waiting ti	Ū		
	process fo algorithm	or each of the s s in part a?	scheduling		
	part a re		uling algorithm in minimal average rocesses)?		

Roll No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019-20

Course Code: CSE 210

Course Name: OPERATING SYSTEMS

Program & Sem: B. Tech.(CSE) & V

Date: 23 December 2019

Time: 9:30 AM to 12:30 PM

Max Marks: 80

Weightage: 40%

Instructions:

Read the question properly and answer accordingly. (i)

Question paper consists of 3 parts. (ii)

Scientific and Non-programmable calculators are permitted. (iii)

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 2 marks.

(10Qx2M=20M)

1. Differentiate between Uniprogramming and Multiprogramming.	(C.O.No.1) [Knowledge]
2. What are the objectives of Operating Systems?	(C.O.No.1) [Knowledge]
3. List out the reasons for process termination.	(C.O.No.2) [Knowledge]
4. Define context-switching.	(C.O.No.2) [Knowledge]
5. Define Starvation.	(C.O.No.3) [Knowledge]
Differentiate between short-term and long-term schedulers.	(C.O.No.3) [Knowledge]
7. What is meant by Direct Communication?	(C.O.No.4) [Knowledge]
8. What does a solution to the Critical-Section problem must satisfy?	(C.O.No.4) [Knowledge]
9. What is meant by memory compaction?	(C.O.No.5) [Knowledge]
10. Define Virtual Memory?	(C.O.No.5) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 6 marks.

(5Qx6M=30M)

- 11. "Operating System is a Resource Manager and Control Program" justify this statement with suitable functionality of Operating System. (C.O.No.1) [Comprehension]
- 12. Explain the process state transition diagram used in multiprogramming environment. (C.O.No.2) [Comprehension] Describe the fields in a process control block (PCB).
- 13. Most round-robin schedules uses a fixed size quantum. Give an argument in favor of a small quantum. Now give an argument in favor of a large quantum. Compare and contrast the types (C.O.No.3) [Comprehension] of systems and jobs to which the argument apply.

- 14. Consider a system with four processes P1, P2, P3, and P4, and two resources, R1, and R2, respectively. Each resource has two instances. Furthermore:
 - P1 allocates an instance of R2, and requests an instance of R1;
 - P2 allocates an instance of R1, and doesn't need any other resource;
 - P3 allocates an instance of R1 and requires an instance of R2;
 - P4 allocates an instance of R2, and doesn't need any other resource.
 - (a) Draw the resource allocation graph.
 - (b) Is there a cycle in the graph? If yes name it.
 - (c) Is the system in deadlock? If yes, explain why. If not, give a possible sequence of executions after which every process completes. (C.O.No.4) [Comprehension]
- 15. Explain the concepts of Paging with hardware implementation of page table.

(C.O.No.5) [Knowledge]

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

16. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Process	Burst-Time	Priority
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

The processes are assumed to have arrived in the order p1, p2, p3, p4, p5, all at time 0.

- a) Draw the Gantt charts illustrating the execution of these processes using SJF, a non-preemptive priority (a smaller priority number implies a higher priority), and RR (quantum=3) scheduling.
- b) What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c) What is the waiting time of each process for each of the scheduling algorithms in part a? (C.O.No.3) [Comprehension]

17. Consider the following snapshot of the system.

Process	Allocation	Мах	Available
	A, B, C, D	A, B, C, D	A, B, C, D
P0	2 0 0 1	4 2 1 2	3 3 2 1
P1	3 1 2 1	5 2 5 2	
P2	2 1 0 3	2 3 1 6	
P3	1 3 1 2	1 4 2 4	
P4	1 4 3 2	3 6 6 5	

Answer the following questions using Banker's algorithm.

- a. Determine the need matrix.
- b. Illustrate that the system in a safe state by demonstrating the order in which the processes may complete.
- c. If a request from process P1 arrives for (1,1,0,0), can the request be granted immediately.
- d. If a request from process P1 arrives for (0,0,2,0), can the request be granted immediately.

(C.O.No.4) [Comprehension]

18. Consider the following page reference string:

How many page faults would occur for the following replacement algorithms, assuming three frames in memory? Remember all frames are initially empty, so your first unique pages will all cost one fault each.

- a. LRU replacement
- b. FIFO replacement
- c. Optimal replacement

(C.O.No.5) [Comprehension]

Semester: 5 TH

Course Code: CSE 210

Course Name: Operating Systems

Date: 23-12-2019

Time: 3Hrs

Max Marks: 80

Weightage: 40%

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.N O	Unit/Module Number/Unit /Module Title	[Ma	Memory recall Thoug provoking [Marks allotted] [Marks all Bloom's Levels Bloom's L		type otted]	Problem Solving type [Marks allotted]		Total Marks			
				С			С			С		
1,2,11	1	1	4			6						10
3,4,12	2	2	4			6						10
5,6,13,16	3	3	4			6			10			20
7,8,14,17	4	4	4			6			10			20
9,10,18	5	5	4			6			10			20
	Total Mark s		20			30			30			80

K =Knowledge Level C = Comprehension Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

SOLUTION

Semester: 5TH

Course Code: CSE 210

Course Name- Operating Systems

Date: 23-12-19

Time: 3 HOURS

Max Marks: 80

Weightage: 40%

Part A

 $(10Q \times 2M = 20 \text{ Marks})$

Q No			Max. Time
	Solution	Scheme of	required for each
		Marking	Question
1	Two Differences between Uniprogramming and Multiprogramming.	2M	2 min
2	Objectives of Operating Systems: Efficiency, Convenience and ability to evolve	2M	2 min
3	Reasons for process termination: Time limit expired, Memory unavailable, I/O failure, Bounds violation etc	2M	2 min
4	Context Switching definition – switching the CPU between two processes.	2M	2 min
5	Starvation – Indefinite blocking of low priority processes by high priority processes.	2M	2 min
6	At least two differences between short-term and long- term schedulers.	2M	2 min
7	Direct Communication – Send and Receive primitives	2M	2 min
8	Mutual Exclusion, Progress, Bounded Waiting	2M	2 min
9	Compaction – Shuffling memory contents	2M	2 min
10	Virtual Memory definition	2M	2 min

			·
Q No		Scheme of	Max. Time
	Solution	Marking	required for
			each
			Question
11	Justification for Resource Manager.	3m	10 min
	Justification for Control Program.		
	- cacamean for control frogramm	3m	
		(3+3= 6M)	
		(0.10.0111)	
12	Process State transition diagram.	2+2+2 = 6M	10 min
	Transition among states.		
	PCB fields and description.		
13	Most round-robin schedules uses a fixed size quantum.	3+3 = 6M	10 min
	Give an argument in favor of a small quantum. Now give		
	an argument in favor of a large quantum. Compare and		
	contrast the types of systems and jobs to which the		
	argument apply. Round Robin – Argument in favor of small quantum with		
	example		
	-Argument in favor of large quantum with example.		
14	a)	2+2+2 = 6M	10 min
	b) P2 and P4 are running, P1 is waiting for R1, and P2 is waiting for R2.		
	c) There is a cycle, but no deadlock.		
	- P2 finishes, release R1;		

	- P4 finishes, release R2;		
	- P1 acquires R1, finishes and release R1,R2;		
	- P3 acquires R2, finishes and release R1,R2;		
15	-Paging Concept. - Hardware Implementation -Mapping of pages on to frames, representation with suitable diagram	2+2+2 = 6M	10 min

Part C

 $(3Q \times 10M = 30Marks)$

	raito	(3Q X 10W - 3	owanie,
Q No	Solution	Scheme of Marking	Max. Time required for each Question
16	 a) Gantt charts illustrating the execution of these processes using SJF, a non-preemptive priority (a smaller priority number implies a higher priority), and RR (quantum=3) scheduling. b) Turnaround time of each process for each of the scheduling algorithms in part a? c) Waiting time of each process for each of the scheduling algorithms in part a? 	6+2+2 = 10 M	20 min
17	a. Determination of need matrix.	3+4+1.5+1.5	20 min

	b. Illustrating that the system in a safe	=10M	
	state by demonstrating the order in		
	which the processes may complete.		
	c. If a request from process P1 arrives for		
	(1,1,0,0), can the request be granted		
	immediately Yes		
	d. If a request from process P1 arrives for		
	(0,0,2,0), can the request be granted		
	immediately Yes		
18	-LRU Page Replacement	3+3+4 = 10M	
	-FIFO		20 min
	-Optimal		

