

	1	1 1	1 1			: :		1		
		1 5	i ;			,)	k s		
1 - 11 A 1 - 1		2 1	1 1			: 1	1	i i		
HALLINA	, 1	1 1	1 3	1	i			i i	!	
I MULLING. I	, ,	1 1	1 2							
		1 1	1 1	3				: :		
, ,	1 1	1 !	1 1			t j		l i	i	
. 1	1 1	4 4	1 6			: :		t :	,	
i I		4 ;		i		,			i	

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem, 2019-20

Course Code: CIV 313

Course Name: ADVANCED SURVEYING

Program & Sem: B. Tech. (Civil) & V

Date: 27.09.2019

Time: 11:00AM to 12:00PM

Max Marks: 40

Weightage: 20%

instructions:

(i) Use of non-programmable Scientific Calculator is permitted

(ii) Read all the questions carefully before answering them

Part A (Memory Recall Questions)

Answer all the Questions. Each Question carries four marks

(3Qx4M=12M)

1. Discuss briefly the classification of triangulation system.

(C.O.NO.1) [Knowledge]

2. Write the operations involved in routine of triangulation survey.

(C.O.NO.1) [Knowledge]

3. Define accuracy and precision.

(C.O.NO.1) [Knowledge]

Part B (Thought Provoking Question)

Answer both the Questions. Each Question carries eight marks.

(2Qx8M=16M)

- Identify which all parameters can be determined through principle of triangulation and prove it.
 (C.O.NO.1) [Comprehension]
- 5. Two triangulation stations A and B are 60 kilometres apart and have elevations 240 m and 280 m respectively. Find the minimum height of signal required at B so that tile line of sight may not pass near the ground than 2 metres. The intervening ground may be assumed to have a uniform elevation of 200 metres. (C.O.NO.1) [Comprehension]

-112

Part C (Problem Solving Questions)

Answer the Question. The Question carries twelve marks

(1Qx12M=12M)

6 a. Directions were observed from a satellite station S, 65m from C, with the following results:

A (0° 0' 0"), B (62° 40' 44") and C (276° 12' 0").

The approximate lengths of AC and BC are 14.5km and 21.35km respectively. Compute the angle ACB if satellite station is to the right of C, [8 M]

(C.O. NO.1) [Application]

b. If the probable error of direction measurement is 1.2 seconds, compute the maximum value of R for the desired maximum probable error of 1 in 10,000. [4 M] (C.O.NO.1) [Comprehension]

Date: 27 September 2019

Time: 11am to 12 pm

Max Marks: 40

Weightage: 20%

Semester: V

Course Code: CIV 313

Course Name: Advanced Surveying

Extract of question distribution [outcome wise & level wise]

Q. No.	C.O. No.	Unit/Module Number/ Unit/Module	Bloom's Levels	Thought provoking type [Marks allotted] Bloom's Levels	Problem Solving type [Marks allotted]	Total Marks
		Title	К	С	. А	
1	CO 1		4			4
2	CO 1	Module 1	4			4
3	CO 1	Geodetic Surveying	4			. 4
4	CO 1	1		8		8
5	CO 1	Theory of Errors		8		8
6	CO 1		4		08	12
1	otal arks		16	16	08	40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Mr. Gopalakrishnan

Reviewers' Comments

SCHOOL OF ENGINEERING

SOLUTION

Semester: V

Date: 27 September 2019

Time: 11am to 12pm

Course Code: CIV 313

Max Marks: 40

Course Name: Advanced Surveying

Weightage: 20%

Part A

 $(3Q \times 04M = 12 \text{ Marks})$

Q. No.	Solution	Scheme of Marking	Max. Time required for each Question
124	Based on the extent and purpose of the survey, and consequently on the degree of accuracy desired, triangulation surveys are classified as 1) first-order or primary. 2) second-order or secondary, and 3) third-order or tertiary. First-order triangulation is used to determine the shape and size of the earth or to cover a vast area like a whole country with control points to which a second-order triangulation system can be connected. A second-order triangulation system consists of a network within a first-order triangulation. It is used to cover areas of the order of a region, small country, or province. A third-order triangulation is a framework fixed within and connected to a second-order triangulation system. It serves the purpose of furnishing the immediate control for detailed engineering and location surveys.	1 Mark for classification 1 Mark for description of each (03 x 01 Mark = 03 Marks)	0.5
2	The routine of triangulation survey, broadly consists of (a) field work, and (b) computations. The field work of triangulation is divided into the following operations: (i) Reconnaissance (ii) Erection of signals and towers (iii) Measurement of base line (iv) Measurement of horizontal angles (v) Measurement of vertical angles (vi) Astronomical observations to determine the azimuth of the lines.	0.5 Mark 0.5 Mark each 6 x 0.5 Mark -03 Marks	05 Minutes
3	(1) Accuracy: The term accuracy is used to denote the closeness or a measurement to its true value. The measured value is said to be accurate if it is near to its true value. Thus, the accuracy reflects the degree of perfection of the measurement.	2 Marks for accuracy	05 Minutes

(2) Precisio	on: The term precision of a measurement to used to denote		
	ss or nearness to another measurement of the same quantity. If a	2 Marks for	
	is measured several times and the values obtained are very		
	one another, it is said that precision is high. It indicates degree		
	ement between several measurements of same quantity and		
	s on degree of perfection used in observations, instruments and		
method			

Part B

 $(2Q \times 08M = 16 \text{ Marks})$

Q. No.	Scheme of Marking	Max. Time required for each Question
Fig. 1. Shows two interconnected triangles ABC and BCD . All the angles in both the triangles and the length L of the side AB , have been measured at the triangulation station. A , whose coordinates $AC_A = C_A$, and known $AC_A = C_A$. The objective is to determine the coordinates of the triangulation stations B , C , and D by the method of triangulation stations B , C , and D by the method of triangulation Let us first calculate the lengths of all the lines B with ABC , we have $ \frac{AB}{\sin 3} = \frac{BC}{\sin 1} = \frac{CA}{\sin 2} $ We have $ \frac{AB}{\sin 4} = \frac{E \sin 1}{\sin 2} = \frac{CA}{\sin 3} $ Fig. 1. Principle of triangulation $ABCD$, by sine rule $ABCD$ is the have $ \frac{BC}{\sin 6} = \frac{L \sin 1}{\sin 3} = \frac{BC}{\sin 5} $ We have $ \frac{BC}{\sin 6} = \frac{CD}{\sin 4} = \frac{BD}{\sin 5} $ We have $ \frac{BC}{\sin 6} = \frac{L \sin 1}{\sin 3} = \frac{BD}{\sin 5} $ or $ CD = \left(\frac{L \sin 1}{\sin 3}\right) \frac{\sin 4}{\sin 6} = \frac{CC}{\cos 3} $ and $ BC = \left(\frac{L \sin 1}{\sin 3}\right) \frac{\sin 5}{\sin 6} = \frac{1}{300} $	1 Mark for figure 3 Mark for derivation	15 Minutes

1	Let us now calculate the azimums of an me times.		!
	Azimuth of $AB = \Theta = \Theta_{AB}$	-	a p
1	Azimuth of $AC = \theta + \pm 1 = \theta_{30}$		
	Azimuth of $BC = \Theta - 180 + 22 = \Theta_{B}$		
	Azimuth of $BD = 9 + 180^{\circ} + (-2)^{\circ} - 4^{\circ} = 0_{BD}$: !	
	Azimuth of $CD = \theta - 2z + 2z = \theta_{CD}$	1	
	From the known lengths of the sides and the azimuths, the consecutive coordinates can be computed as	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	below.		
	Latitude of $AB = I_{AB} \cos \theta_{AB} = L_{AB}$	İ	
	Departure of $AB = I_{AB} \sin \theta_{AB} - D_{AB}$		
	Latitude of $AC = \frac{1}{AC} \cos \theta_{AC} = L_{AC}$	1	A
	Departure of $AC = I_{AC} \sin \theta_{AC} = D_{AC}$		and the second
	Latitude of $BD = I_{BD} \cos \theta_{BD} = L_{BD}$		
	Departure of $BD = l_{BD} \sin \theta_{BD} = L_{BD}$	2 Mark for Latitude and	
1	Lantide of $CD = lon \cos \theta_{CT} = L_{CT}$	2 Mark for	
	Departure of $CD = \frac{1}{100} \sin \theta_{cc} = D_{cc}$	Departure	
	•		
	The desired coordinates of the triangulation stations B , C , and D are as follows		
	X -coordinate of B . $X_B = X_A + D_{AB}$		
	Y-coordinate of B. $T_{\overline{B}} = T_{\overline{B}} - L_{A\overline{B}}$		
4	X -coordinate of C , $X_{C} = X_{A} + D_{A}$:		
and the second	T -coordinate of C . $T_C = T_A - L_{AC}$		v e manual de
	X -coordinate of D . $X_{\tilde{z}^0} = X_{\tilde{z}^0} + D_{\tilde{z}\tilde{z}^0}$		
	Y-coordinate of D . $Y_D = Y_B - L_{BD}$		
	It would be found that the length of side can be computed more than once following different routes.		
	and therefore, to achieve a better accuracy, the mean of the computed lengths of a side is to be considered.		
			a a
		Distance D ₁	
	\mathbf{M}_{c} and \mathbf{m}_{c} and \mathbf{m}_{c} and \mathbf{m}_{c} and \mathbf{m}_{c} and \mathbf{m}_{c}	and D_2 –	
	Let us take this also many so to determine the finish to to to be a taken in the control of the 200 to the control of the cont	04 Marks	
	The contract days is Operation on a state of covering the fit of	Elevation of	
	19 (1888) M. (1888) A. M. (1976) K.D.	Line of sight	15
2	Distance of B from the point of tangency $D_1 = D + D = m_1 + 2 \cdot 786 + 36.23 \cdot 146$	at B - 02 M	15 Minutes
	The elevation is left B above the ditting corresponding to the first $c(B)$ is two		
	by (2.5 to 1.25 to 1.25 to 1.5	Minimum	
	Elevation of fine of Sight as P 102 (85.3) 256 E m	height of	
	Ground Jevel of P. (281) 45	signal at B -	
	Minimum height of signal atoms around at $B=28 \cdot 23 - 230$ in 10.33 in	02 M	

Q. No.	Solution	Scheme of Marking	Max. Time required for each Question
	$\frac{1}{\theta}$	1 Mark for diagram	
1a.	$\theta = 62^{\circ}40' \ 44''$ $CAS = \gamma = 83^{\circ} \ 48' \ 0''$ $AC = b = 14.5 \text{km} = 14500 \text{m}$ $BC = a = 21.35 \text{km} = 21350 \text{m}$ $AS = d = 65 \text{m}$		15 Minutes
	$\alpha = \frac{d \sin (\theta + \gamma)}{b} 206265$ $\alpha = \frac{65 \sin (62^{\circ}40' 44'' + 83^{\circ} 48' 0'')}{14500} * 206265$ $\alpha = 510. 62 \text{seconds} = 0^{\circ}8' 30.62''$	3 Marks	
	$\beta = \frac{d \sin \gamma}{b} \ 206265$ $\beta = \frac{65 \sin (83^{\circ} 48' 0'')}{21350} * 206265$		
And the second s	$\beta = 624.3 \text{ seconds} = 0^{\circ}10' 24.3"$	3 Marks	
A CONTRACTOR OF THE PROPERTY O	$\phi = \theta - \alpha - \beta = 62^{\circ}40' \ 44'' - 0^{\circ}8' \ 30.62'' - 0^{\circ}10' \ 24.3''$ Angle ACB, $\phi = 62^{\circ}21' \ 49.08''$	l Mark	

1	1	Given $d = 1.25$; maximum probable error – 1 m 10.000		!
American Company of the Company		$L^2 = \frac{4}{3} d^2 R$	ļ	
	A SECTION CO. A PART A SECTION CO.	L being the probable error of a logarithm, it represents the logarithm of the ratio		
		of the true value and a value containing the probable error.		The state of the s
		L = the 6th place in log of $\left(1 \pm \frac{1}{10000}\right)$		
		L = the 6th place in log ((1 ± 0.00001)		!
		$\log (1 + 0.00001) = 0.0000434$		05
-	2	The 6th place in the log value = 43	Value of L =	Minutes
		Hence $L = \pm 43$ It is given that $d = 1.2$ "	2 Marks	
		$L^2 = \frac{4}{3} d^2 R$		
Mary - Marianasanin - 11117		$R = \frac{3}{4} \frac{L^2}{d^2}$:	
		$R = (3/4) (43^2/1.25^2)$	Value of R =	
Mary Company		R = 963.03	2 Marks	
ì			1	ii

	·	 			 	,	 	 		
600			1							
Roll No.										
		 L	L	L	 			 		

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Course Code: CIV 313

Course Name: ADVANCED SURVEYING Program & Sem: B.Tech. (Civil) & V Sem

Date: 16.11.2019

Time: 11:00 AM to 12:00 PM

Max Marks: 40

Weightage: 20%

Instructions:

(i) Read all the questions carefully before answering them

(ii) Use of non-programmable scientific calculator is permitted

Part A [Memory Recali Questions]

Answer all the Questions. Each Question carries four marks.

(3Qx4N=12N)

1. Define: Zenith & Nadir

(C.O.No.2) [Knowledge]

2. Describe Celestial Sphere and Celestial Horizon.

(C.O.No.2) [Knowledge]

3. List the phenomena leading to changes in seasons.

(C.O.No.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries eight marks.

(2Qx8M=16M)

- 4. Find the difference of longitude between two places A and B from their following longitudes:
 - (1) Longitude of A = 40° W Longitude of B = 73° W
 - (3) Longitude of A = 20° E Longitude of B = 50° W

- (2) Longitude of A = 20° E Longitude of B = 150° E
- (4) Longitude of A = 40° E Longitude of B = 120° W

(C.O.No.2) [Comprehension]

5. Discuss about spherical triangle and its properties.

(C.O.No.2) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries twelve marks.

(1Qx12M=12M)

- 6. Compute the distance in nautical miles and kilometers between two points A and B along the parallel of latitude, given that
 - (1) Lat. of A, 28° 42' N; longitude of A, 31° 12' W Lat. of B, 28° 42' N; longitude of B, 47° 24' W
 - (2) Lat. of A, 12° 36' S; longitude of A, 15° 6' W Lat. of B, 12° 36' S; longitude of B, 120° 24' E

(C.O.No.2) [Application]

Sem & AY: Odd Sem 2019-20

Course Code: CIV 313

Course Name: Advanced Surveying

Program & Sem: B. Tech. (Civil) & V Sem

Date: 16.11.19

Time: 11:00AM to 12:00PM

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.	C.O. No.	Unit/Module Number/ Unit/Module Title	[Ma Bloo	ory reca rks allo om's Le	_	[Ma	ght pro type rks allo pm's Le	-		blem S type arks allo	-	Total Marks
1	C.O. No. 2		4									4
2	C.O. No. 2		4									4
3	C.O. No. 2	Module 2	4									4
4	C.O. No. 2	Field Astronomy				8						8
5	C.O. No. 2					8						8
6	C.O. No. 2								12			12
	Total Ma		12			16			12			40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60% of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

[Mr. Bhavan Kumar M]

Reviewer's Comments:

SCHOOL OF ENGINEERING

SOLUTION

Sem & AY: Odd Sem 2019-20

Course Code: CIV 313

Course Name: Advanced Surveying

Program & Sem: B. Tech. (Civil) & V Sem

Date: 16.11.19

Time: 11:00AM to 12:00PiM

Max Marks: 40

Weightage: 20%

Part A

 $(3Q \times 04M = 12 \text{ Marks})$

	(- (O-1VI 12 1VIC	1110)
Q. No.	Solution	Scheme of Marking	Max. Time required for each Question
1	Zenith (Z) is the point on the upper portion of the celestial sphere marked by plumb line above the observer. OR It is thus the point on the celestial sphere immediately above the observer's station. Nadir (E) is the point on the lower portion of the celestial sphere, marked by the plumb line below the observer. OR It is thus the point on the celestial sphere vertically below the observer's station.	2 Marks for Zenith 2 Marks for Nadir	05 Minutes
2	Celestial Sphere - The imaginary sphere on which all stars appear to lie or to be studded is known as the Celestial Sphere. The Celestial Horizon (also called True or Rational horizon or geocentric horizon) - It is the great circle traced upon the celestial sphere by that plane which is perpendicular to the Zenith—Nadir line, and which passes through the centre of the earth	2 Marks for Celestial Sphere 2 Marks for Celestial Horizon	05 Minutes
3	The following phenomena lead to changes in seasons: Equinox & Solstices 1. The Vernal Equinox or the First Point of Aries 2. Autumnal Equinox or the First Point of Libra 3. Summer solstice 4. Winter solstice	1 Mark for each phenomena 4 x 01 Mark = 04 Marks	05 Minutes

Q. No.	Solution	Scheme of Marking	Max. Time required for each Question
	(1) Longitude of A = 40° W; Longitude of B = 73° W Difference of longitude between two places A and B = 73° - 40° Difference of longitude between two places A and B = 33°	02 Marks	
4	(2) Longitude of A = 20° E; Longitude of B = 150° E Difference of longitude between two places A and B = 150° – 20° Difference of longitude between two places A and B = 130°	02 Marks	10
	(3) Longitude of A = 20° E; Longitude of B = 50° W Difference of longitude between two places A and B = 20° – (- 50°) Difference of longitude between two places A and B = 70°	02 Marks	Minutes
	(4) Longitude of A = 40° E; Longitude of B = 120° W Difference of longitude between two places A and B = 40° – (- 120°) Difference of longitude between two places A and B = 160°	02 Marks	
5	 A spherical triangle is a triangle formed by the intersection of three arcs of great circles of the sphere. The properties of a spherical triangle are summarised below: The sum of any two sides of a spherical triangle is greater than the third. The sum of the three sides of a spherical triangle is always less than the circumference of the great circle. The sum of the three angles of a spherical triangle is greater than two right angles (>180°), but is less than six right angles (<540°). If two angles are equal, the sides opposite to them are also equal. The greater angle is opposite to the longer side and vice versa. Any angle of the spherical triangle is less than two right angles (<180°). If the sum of two sides is equal to two right angles (=180°), the sum of the angles opposite to them is also equal to two right angles (=180°). (Student is expected to write any 4 points)	Definition – 02 Mark 01.5 Mark for each property - 4 x 1.5 Mark = 06 Marks	10 Minutes

	Tarte	$\kappa 12M = 12 Mar$	ks)	
Q. No	5.1.4	Scheme of Marking	Max. Time required for each	
	(1) Lat. of $A = 28^{\circ} 42' \text{ N}$; Longitude of $A = 31^{\circ} 12' \text{ W}$		Question	-
	Lat. of B = $28^{\circ} 42' \text{ N}$; Longitude of B = $47^{\circ} 24' \text{ W}$			
	Distance in nautical miles between A and B along the parallel of latitude			
	= difference of longitude x cos (Latitude)	Formula – 1M		
	Difference of longitude = (47° 24' - 31°12') = 16° 12'			
	Difference of longitude = 972'			
	Distance in nautical miles between A and B = $972 \times \cos(28^{\circ}42')$	Distance AB in nautical		
	Distance in nautical miles between A and $B = 852.59$ nautical miles	miles – 03M		
	Distance in km between A and B = 852.59×1.853			
	Distance in km between A and B = 1579.84km	Distance AB in km – 02M	ĺ	
6	(2) Lat. of $A = 12^{\circ} 36' S$; Longitude of $A = 15^{\circ} 6' W$		25 Minutes	
	Lat. of B = $12^{\circ} 36' \text{ S}$; Longitude of B = $120^{\circ} 24' \text{ E}$			
	Distance in nautical miles between A and B along the parallel of latitude			
	= difference of longitude x cos (Latitude)	Formula – 1M		
	Difference of longitude = $(15^{\circ} 6' - [-120^{\circ}24']) = 135^{\circ} 30'$			
	Difference of longitude = 8130'			
	Distance in nautical miles between A and B = $8130 \times \cos (12^{\circ}36')$	Distance AB		
	Distance in nautical miles between A and $B = 7934.20$ nautical miles	in nautical miles – 03M		
	Distance in km between A and B = 7934.20×1.853			
	Distance in km between A and B = 14702.07km	Distance AB in km – 02M		

Roll No						
		1				

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

Course Code: CIV 313

Course Name: ADVANCED SURVEYING

Program & Sem: B. Tech. (CIV) & V (OE-I)

Date: 20 December 2019

Time: 9:30 AM to 12:30 PM

Max Marks: 80

Weightage: 40%

Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Use of non-programmable scientific calculator is permitted

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 06 marks.

(5Qx6M=30M)

List out the objectives of triangulation survey

(C.O.No.1) [Knowledge]

2. Define: i) Latitude ii) Longitude and iii) Prime Vertical

(C.O.No.2) [Knowledge]

3. With a neat figure, explain vertical and oblique photograph

(C.O.No.3) [Knowledge]

4. Bring out the differences between accuracy and precision

(C.O.No.1) [Knowledge]

5. Determine the difference in longitude between two places A and B from the following longitudes:

(i) Longitude of A = 79° E Longitude of B = 32° W (ii) Longitude of A = 126° E Longitude of B = 14° E (iii) Longitude of A = 43° W

Longitude of B = 25° W

(C.O.No.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

- 6. Derive the expression for scale of a vertical photograph on:
 - i) Flat terrain
 - ii) Variable terrain.

(C.O.No.3) [Comprehension]

7. Derive the expression for relief displacement.

(C.O.No.3) [Comprehension]

8. A vertical photograph was taken at an altitude of 1800m from the datum using a camera having focal length of 15cm. Determine the scale of the photograph for a terrain lying at an elevation of i) 250m ii) 520m and iii) 870m (C.O.No.3) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. The Question carries 20 marks.

(1Qx20M=20M)

9. The ground length of a line AB is known to be 545 m and the elevations of A and B are 500 m and 300 respectively above mean sea level. A vertical photograph taken with a camera having focal length of 20 cm include the images a and b of these points, and their photographic coordinates are

$$(x_a = + 2.65 \text{ cm}, y_a = + 1.36 \text{ cm}); (x_b = -1.92 \text{ cm}, y_b = + 3.65 \text{ cm})$$

The distance ab scaled directly from the photograph is 5.112 cm. Compute the flying height above the mean sea level.

(C.O.No.3) [Application]

GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.			Memory recall	Thought	Problem Solving	
No.	C.O. NO	Unit/Module	type	provoking type	type	Total
NO.	C.O. NO	Number/Unit /Module	_	_	[Marks allotted]	Total
	(% age of	Title	Bloom's Levels	Bloom's Levels	Bloom's Levels	Marks
	CO)		K	С	Α	
					, ,	
1	C.O. NO. 1	Module 1	6			_
	C.O. NO. 1	Geodetic Surveying and Theory of Errors	6			6
2	C.O. NO. 2	Module 2	6			6
<u> </u>	0.0.110.2	Field Astronomy				
3	C.O. NO. 3	Module 3 Aerial Photogrammetry	6			6
		Module 1				
4	C.O. NO. 1	Geodetic Surveying and Theory of Errors	6			6
5	C.O. NO. 2	Module 2	6			6
	0.0.110.2	Field Astronomy	0			
6	C.O. NO. 3			10		10
7	C.O. NO. 3	Module 3		10		10
8	C.O. NO. 3	Aerial Photogrammetry	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10		10
9	C.O. NO. 3				20	20
Tot	al Marks		30	30	20	80
V = V = v v le des l'evel C = Consens le reine l'evel A = A v l'evel e un l'evel						

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Comment:

SCHOOL OF ENGINEERING

SOLUTION

Semester:

Odd Sem. 2019-20

Course Code:

CIV 313

Course Name: ADVANCED SURVEYING

Program & Sem: B.TECH. (CIVIL) & V SEM

Date:

20.12.2019

Time:

3 HRS

Max Marks: 80

Weightage: 40%

Part A

 $(5Q \times 6M = 30Marks)$

Q. No.	Solution	Scheme of Marking	Max. Time required for each Questior
1	 The primary objectives of triangulation surveys are (i) to establish accurate control for plane and geodetic surveys of large areas, by terrestrial methods, (ii) to establish accurate control for photogrammetric surveys of large areas, (iii) to assist in the determination of the size and shape of the earth by making observations for latitude, longitude and gravity (iv) to determine accurate locations of points in engineering works 	1.5 Marks for each objective (04 x 1.5M = 06M)	5 Minutes
2	i) Latitude - It is the angular distance of any place on the earth's surface north or south of the equator and is measured on the meridian of the place. ii) Longitude - The longitude of a place is the angle between a fixed reference meridian called the prime or first meridian and the meridian of the place. The prime meridian universally adopted is that of Greenwich. The longitude of any place varies between 0° to 180°, and is reckoned as east or west of Greenwich. iii) Prime Vertical - It is that particular vertical circle which is at right angles to the observer's meridian, and which, therefore passes through the east and west points of the horizon.	2 Marks for each definition	5 Minutes

Sketch of Vertical Photograph - 1M

Vertical photographs are those aerial photographs which are taken when the optical axis of the camera is vertical or nearly vertical. A truly vertical photograph closely resembles a map. These are utilized for the compilation of topographical and engineering surveys on various scales.

Explanation of vertical photograph – 2M

10 Minutes

Sketch of Oblique Photograph - 1M

Oblique photographs Oblique photograph are obtained when the optical axis of the camera is intentionally inclined from the vertical. An oblique photograph covers larger area of the ground.

Explanation of oblique photograph - 2M

	Accuracy	Precision		
	Accuracy is used to denote the closeness or nearness of a measurement to its true value.	Precision of a measurement is used to denote its closeness or nearness of to another measurement of the same quantity.	02 Marks for each	
4	The measured value is said to be accurate if it is very near to its true value.	The precision is said to be high if a particular quantity is measured several times and the values obtained are very close to one another	difference (03 x 2M = 06M)	5 Minutes
	Accuracy reflects the degree of perfection the measurement.	Precision reflects the degree of agreement between several measurements of the same quantity		
	(i) Longitude of A = 79° E; Long Difference of longitude between Difference of longitude between	een A and B = 79° – (– 32°)	02 Marks	
5	(ii) Longitude of A = 126° E; Longitude of B = 14° E Difference of longitude between A and B = 126° – 14° Difference of longitude between A and B = 112°		02 Marks	10 Minutes
	(iii) Longitude of A = 43° W; Lor Difference of longitude betwee Difference of longitude between	een A and B = $43^{\circ} - 25^{\circ}$	02 Marks	

Part B

 $(3Q \times 10M = 30 \text{ Marks})$

Optical axis	Q. No.	Solution	Scheme of Marking	Max. Time required for each Question
The scale of a vertical photograph over the flat terrain is the ratio of the photo distance ab to the ground distance AB between the	6	Positive Optical axis Ground surface The scale of a vertical photograph over the flat terrain is the ratio	Figure – 1 M	25 Minutes

Thus, if scale is s then

$$s = \frac{ab}{AB}$$

From similar triangles Oab and OAB,

$$\frac{ab}{AB} = \frac{Op}{OP}$$

$$\frac{ab}{AB} = \frac{f}{H'}$$

or

$$s = \frac{f}{H'}$$

where f = focal length of the aerial camera H' = Flying height above the ground

ii) Scale of a vertical photograph on variable terrain

If the terrain varies the object distance H' varies depending upon the elevation of the points. In the above figure, this distance for the point A, having elevation h_A , is $(H - h_A)$, and for the point B having elevation h_B is $(H - h_B)$.

The scale, therefore, varies from point-to-point depending upon the elevation of the points.

If the distance of image, a of A on the photograph from the principal point p is 'pa', the scale at the point A, is given by

$$s = \frac{pa}{A_0 A}$$

From similar triangles Opa and OA_oA, we have

$$\frac{pa}{A_O A} = \frac{f}{H - h_A}$$

$$s_A = \frac{f}{H - h_A}$$

Derivation of expression for scale – 3 M

Figure - 2 M

Derivation of expression for scale – 4 M

Verestev)	Similarly, at the point B, we have		dentanamentakkalangan b
	$s_B = \frac{f}{H - h_B}$		
	In general, at any point having elevation h, the scale is given by		
:	$s = \frac{f}{H - h}$		
	where H = the flying height above the datum.		
	Datum	Figure – 4 M	
7	The shift or displacement in the photographic position of an image caused by the relief of the object, i.e. its elevation above or below a datum, is called relief displacement.		20 Minutes
	The Fig. shows a vertical photograph taken from flying height H above datum. The focal length of the camera is f, and p is the principal point.		
	The image of ground point A, which has elevation of h_A above datum, is located at 'a' on the photograph. An imaginary point A' is located vertically beneath A in the datum plane, and its corresponding, imaginary image point is at a'.		
	Since the lines AA' and OP are the vertical lines, the plane, AaOPA' is a vertical plane, The plane A'a'OPA' is also a vertical plane which coincides with plane AaOPA'. These two planes intersect the photo plane along the lines pa' and pa, respectively.	Derivation – 6 M	
	Since the lines pa and pa' are coincident, the line aa', which is relief displacement of point A due to its relief h_A is radial from the principal point.		
	From similar triangles Oap and OAA $_{\rm o}$ $\frac{r}{R} = \frac{f}{H - h_{A}}$		

	or f. $R = r (H - h_A)$		
	Also, from similar triangles Oa'p and OA'P		
	$\frac{r'}{R} = \frac{f}{H}$		
	II II		
	or f. $R = r' H$		
	Given data: Flying Height, H = 1800m		
	Focal length, f = 15cm = 0.15m		
	The scale at any height h is given by		
	$s_h = \frac{f}{H - h}$	Formula – 1 M	
	(i) Elevation, h = 250 m 0.15 1		
	$s_{250} = \frac{0.15}{1800 - 250} = \frac{1}{10333.33}$		
8	1 : 10333.33	3 M	20 Minutes
	(ii) Elevation, h = 520m		20 Minutes
	$s_{520} = \frac{0.15}{1800 - 520} = \frac{1}{8533.33}$		
	$\frac{3520}{1800} - \frac{1}{1800} - \frac{1}{1800} - \frac{1}{1800} = $	3 M	
	1 : 8533.33	0 III	
	(iii) Elevation, h = 870m		
	$s_{520} = \frac{0.15}{1800 - 870} = \frac{1}{6200}$		
	1 : 6200	3 M	

Part C

 $(1Q \times 20M = 20 \text{ Marks})$

		, (· ~ × = • · ·	n zo mano,
Q. No.	Solution	Scheme of Marking	Max. Time required for each Question
9	Ground length, AB = 545 m Elevation of A, h_A = 500m Elevation of B, h_B = 300m Focal length, f = 20 cm Photo distance, ab = 5.112cm x_a = + 2.65 cm, y_a = + 1.36 cm x_b = -1.92 cm, y_b = + 3.65 cm The approximate height can be calculated from $\frac{f}{H_{approx.} - h_{ab}} = \frac{ab}{AB}$ $\frac{f}{H_{approx.} - h_{ab}} = \frac{ab}{AB}$	Data – 1 M	50 Minutes

$$H_{approx} - h_{ab} = \frac{f x AB}{ab}$$

$$h_{AB} = \frac{500 + 300}{2}$$
$$h_{AB} = 400 \, m$$

$$H_{approx.} - 400 = \frac{20 \text{ cm x } 545 \text{ m}}{5.112 \text{ cm}}$$

$$H_{approx.} - 400 = 2132.24m$$

 $H_{approx} = 2132.24 + 400$

 $H_{approx} = 2532.24m$

Using this approximate height, ground coordinates of A and B are calculated

$$X_A = \frac{H - h_A}{\mathsf{f}} \cdot x_a$$

$$X_A = \frac{2532.24 - 500}{20 \text{ cm}} \times + 2.65 cm = + 269.27 m$$

$$Y_A = \frac{H - h_A}{f} \cdot y_a$$

$$Y_A = \frac{2532.24 - 500}{20 \text{ cm}} \times + 1.36 \text{cm} = + 138.19 \text{m}$$

$$X_B = \frac{H - h_B}{f} . x_b$$

$$X_B = \frac{2532.24 - 300}{20 \text{ cm}} \times -1.92cm = -214.3m$$

$$Y_B = \frac{H - h_B}{f} \cdot y_b$$

$$Y_B = \frac{2532.24 - 300}{20 \text{ cm}} \times +3.65 cm = 407.38 m$$

Ground Length AB computed based on the approximate height and the ground coordinates determined using the approximate height is given by

Computed AB =
$$\sqrt{(X_A - X_B)^2 + (Y_A - Y_B)^2}$$

Computed AB =
$$\sqrt{(269.27 - [-214.3])^2 + (138.19 - 407.38)^2}$$

Computed AB =
$$\sqrt{(269.27 + 214.3)^2 + (138.19 - 407.38)^2}$$

Computed AB = 553.45m

However, it is known that actual ground length AB = 545m

Calc. of approx. flying ht. – 3 M

Det. of Ground coordinates – 4 M

Det. of computed length AB – 2 M

The second approximate height is calculated as follows:

$$\frac{H - h_{ab}}{H_{approx} - h_{ab}} = \frac{Correct \, AB}{Computed \, AB}$$

$$\frac{H - 400}{2532.24 - 400} = \frac{545}{553.45}$$

H = 2099.69 + 400 = 2499.69m

Using this value of H ground co-ordinates are again computed,

$$X_A = \frac{2499.69 - 500}{20 \text{ cm}} \times + 2.65cm = + 264.96m$$

$$Y_A = \frac{2499.69 - 500}{20 \text{ cm}} \times + 1.36cm = + 135.98m$$

$$X_B = \frac{2499.69 - 300}{20 \text{ cm}} \times - 1.92cm = -211.17m$$

$$Y_B = \frac{2499.69 - 300}{20 \text{ cm}} \times + 3.65cm = 401.44m$$

$$AB = \sqrt{(264.96 + 211.17)^2 + (135.98 - 401.44)^2}$$

AB = 545.13m which agrees with correct length of AB

Therefore, Flying height above mean sea level = 2499.69m

Calc. of approx. flying ht. – 3 M

Det. of Ground coordinates – 4 M

Det. of computed length AB – 2 M

Final answer for Flying ht. – 1 M

