and the second sec
The second se
and the second second
ANNO CONTRACTOR
and the address
and the second s
And the second s
Contraction of the second second
and the second
GAT - MORE RINGWLEDDE
TACH CREATER HERE HTS

			i				
Roll No.							
	1	1 1	1	1 1	1	1 1	

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem. 2019-20DateCourse Code: CIV 308TimeCourse Name: GROUNDWATER HYDROLOGYMaxProgram & Sem: B.Tech (Civil) & VWeig

Date: 27.09.2019 Time: 11.00AM to 12.00PM Max Marks: 40 Weightage: 20%

Instructions:

(i) Read all the questions carefully.

(ii) Answer all the questions.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries two marks. (5Qx2M=10M)

1. Write the name of the major processes involved in hydrological cycle? Differentiate between infiltration and percolation. (C.O.NO.1) [Knowledge]

2. Define residence time. (C.O.NO. 1) [Knowledge]

3. Define watershed and watershed divide? (C.O.NO. 1) [Knowledge]

4. What is the difference between perched aquifer and leaky aquifer

(C.O.NO.1) [Knowledge]

5. Define transmissibility. Write the SI unit of transmissibility.

(C.O.NO. 1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries four marks. (3Qx4M=12M)

6. Define Specific Retention. Specific yield for a soil is 22%. Porosity is given as 39%. Estimate Specific retention. (C.O.NO.1) [Comprehension]

- 112

- Differentiate between Aquiclude and Aquitard. If the Darcy velocity for groundwater through a medium having porosity as 20% is given as 0.00014 cm/sec. Calculate seepage velocity. (C.O.NO. 1) [Comprehension]
- 8. Define flowing and non-flowing well, effluent and influent stream.

(C.O.NO. 1) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries six marks. (3Qx6M=18M)

9. Watershed at a site on a stream has an area of 3000ha. Mean annual rainfall at this place is 750mm. If 15% of the rainfall reaches the basin outlet as stream flow. Find (i) the annual stream flow rate in (m3/sec) (ii) abstraction or losses (in m3)

(C.O.NO.1) [Comprehension]

- The following data were recorded in a constant head permeability test. Internal diameter of permeameter= 7.5cm, head lost over a sample length of 18cm is 24.7cm. Quantity of water collected in 60 sec is 626 ml. Porosity of the soil sample was 44%. Calculate the coefficient of permeability of the soil and discharge velocity during the test.
- 11. The permeability of individual layers P, Q and R of a soil in three layer system is in the ratio 2, 3 and 1 respectively. The ratio of the thickness of the layers P, Q and R are 2, 1 and 2 respectively. Estimate the average permeability perpendicular to the bedding planes. (C.O.NO.1) [Comprehension]

SCHOOL OF ENGINEERING

Semester: 05

Course Code: CIV308

Course Name: Groundwater Hydrology

Date: 27-09-2019 Time: 11am-12pm Max Marks: 40 Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	type arks al om's l	recall lotted] Levels	prov [Ma	rks all om's L	g type lotted]	Problem Solving type [Marks allotted]		Total Marks	
				K			С	······		A		
1	1	Module 1	2									
2	1	Module 1	2									
3	1	Module 1	2									
4	1	Module 1	2									
5	4	Module 1	2									
1	1	Module 1				4						
2	1	Module 1				4						
3	1	Module 1				4						
1	1	Module 1				6				**************************************		
2	1	Module 1				6						
3		Module 1				6						

Total	10		30			40
Marks						

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I here certify that All the questions are set as per the above lines Aashi Agarawal]

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 27-09-2019 Time: Max Marks: 40 Weightage: 20%

Course Name: Groundwater Hydrology

Part A

 $(5Q \times 2M = 10Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Major processes in water cycle/hydrological cycle are 1. Precipitation 2. Evaporation	1+1	2 minutes

Semester: 05

Course Code: CIV 308

	very small,		
4	Perched aquifer- A perched aquifer is a	1+1	2 minutes
A	divide.		
	called watershed		
	points of elevation is		
	connects the highest		
	imaginary line that		
	other. The		
	drainage from the		
	divide one valley or		
	Ridge line that		
	Watershed divide-		
	mouth.		
	through an outlet or		
	water and drains it	· ·	
5	of land that collects	1+1	2 minutes
3	Watershed- An area	1,1	A
	flow rate in that phase		
	that phase/ Average		
	Volume of water in		
	Residence time =		
	hydrological cycle		
	certain phase of		
	pass through a		
	particle of water to		
2	It is the average time taken by a	. 1+1	2 minutes
	To in the		
	layer		
	soil zone to other		
	from one layer of		
	vertical downward movement of water		
	percolation is the		
	surface while		
	into the earth		
	movement of water		
	Infiltration is the		
	6. Runoff		
	5. Groundwater Flow/Base Flow		
	4. Infiltration		
	A T. Claust		1

	unconfined aquifer		
	that doesn't contain		
	much water and is		
	only recharged by		
	local precipitation.		
	A well drilled into a		
	perched aquifer		
	usually yields only		
	enough water for a		
	single household.		
	Leaky Aquifer- It is		
	a type of confined		
	aquifer in which		
	water is confined		
	between a semi		
	permeable layer i.e.		
	aquitard on the		
	[•] bottom and		
	impermeable layer		
	i.e. aquiclude on the		
	top or vice-versa.		
5	The rate at which	2	2 minutes
5	water flows through		
	unit width of aquifer		
	under unit hydraulic		
	gradient.		
	Q = K * i * A		
	If Area of aquifer =		
	aquifer thickness		
	(B) * unit width		
	Hydraulic gradient, i		
	= 1 unit		
	Q=T=k *B		
	Where $T =$		
	transmissivity		
	SI unit of T is		
	m2/day. Dimension		
	is [L2T-1].		

		Part B	$(3Q \times 4M = 12Marks)$
Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Volume of water retained against gravity in the soil after saturation is	2+2	6 minutes

·	51 1 10		
	called specific		
	retention.		
	Sy + Sr = Porosity		
	Where Sy = specific		
	yield		
	Sr= specific		
	retention		
	Given Porositu-		
	Given, Porosity= 39%		
	Sy (Specific yield)		
	= 22%		
	Sr (Specific		
	retention)=		
	Porosity-specific		
	yield		
	= 39%- 22%		
	= 17%		
	Sr = 17%		
2	Aquiclude-	2+2	6 minutes
	A geological	aan taan	0 mmutos
	formation that is		
	completely		
	impermeable. E.g.		
	clay		
	Aquitard-		
	Relatively semi		
	permeable		
	geological		
	formation. e.g.		
	sandy clay		
	Darcy velocity =		
	0.00014cm/sec		
	Porosity= 20%		
	Seepage velocity=		
	Darcy		
	velocity/porosity		
	= 0.00014/0.20		
	=0.0007cm/sec		
3	Flowing Well-	2 + 2	7 minutes
	Whenever		/ 111110000
	piezometric surface		
	is above the ground		
	level, water from a		
	well drilled in a		
	confined aquifer		
	gushes out, such a		
	well is called		
1	flowing well.		

Non- Flowing	
Well- Well drilled	
 in a confined	
aquifer but	
groundlevel is	
above the	
piezometric surface,	
water doesnot	
gushes out , such a	
well is non flowing	
well.	
Effluent Stream-	
when water level in	
the stream is lower	
than the	
groundwater table,	
groundwater	
discharges the	
stream. Such a	
stream is called	
effluent stream or	
gaining stream.	
Influent Stream-	
When water level in	
the stream is higher	
than the	
groundwater table,	
stream loses water	
to groundwater.	
Such a stream is	
called influent	
stream or losing	
stream.	<u> </u>

Part	С

 $(3Q \times 6M = 18Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Given area of catchment = 3000ha, rainfall = 750mm and runoff = 0.15of rainfall Annual Runoff = 0.15* 750 =112.5mm Streamflow rate= {(112.5/1000)*(3000*10000)}/(365*24*60*60) = 0.107m3/sec Losses= 750mm- 112.5mm =637.5mm	3+3	10 minutes

	Losses(in m3) = (637.5/1000)*(3000*10000) = 19125000m3		
2	i = h/L = 24.7/18 = 1.37 n = 0.44 Q= KiA 626/60 = k* 1.37 * (3.14/4)* (7.5 ²) K= 0.172 cm/sec Discharge velocity, V = K* i	4+2	8 minutes
	= 0.172* 1.37 =0.236cm/sec		
3	Let the permeability and thickness of soil layer P = k1,z1 layer Q = k2,z2 R = k3,z3 K1:k2:k3 = 2:3:1 Z1:z2:z3 = 2:1:2 Kvertical = $\frac{\sum_{i=1}^{i=n} Zi}{\sum_{i=1}^{i=n} (Zi)/(ki)}$ =(2+1+2)/{(2/2)+(1/3)+(2/1)} = 1.5 units	3+3	8 minutes

	1	}		1							
	}	1	1	i i	1					i 1	
DALLA	1	1	ł.	1				1 .		(ł	
I DULINO.		}	1						1		
		j.	5	1						. 1	
	i	1	1	ł						. 1	
	1	1	2	1		 			E. 1	/ 1	

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem. 2019-20	
Course Code: CIV 308	
Course Name: GROUNDWATER HYDROLOGY	
Program & Sem: B.Tech (CVE) & V DE	

Date: 16.11.2019 Time: 11:00 AM to 12:00 PM Max Marks: 40 Weightage: 20%

Instructions:

- I. Read all the questions carefully.
- II. Answer all the questions.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries two marks. (5Qx2M=10M)

1. State the differences between confined and unconfined aquifer.

- 2. Define radius of influence.(C.O.NO.2) [Knowledge](C.O.NO.2) [Knowledge]
- 3. Explain Theis recovery. (C.O.NO.2) [Knowledge]
- 4. What is the difference between steady and unsteady flow?
- (C.O.NO.2) [Knowledge]
- 5. Define specific capacity. Write the SI unit of specific capacity.

(C.O.NO.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries six marks. (2Qx6M=12M)

- Draw a neat sketch showing a single well penetrating through a confined aquifer and write the expression for permeability for that aquifer and name all the terms involved.
 (C.O.NO.2) [Comprehension]
- 7. Explain well losses with the types. (C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries nine marks. (2Qx9M=18M)

- 8. Two wells of 20cm diameter are spaced at 120m distance and penetrate fully a confined aquifer of 12m thickness. Calculate the discharge when only one well is discharging under a drawdown of 3m. What will be the percentage decrease in the discharge of this well, if both the wells are discharging under the same drawdown of 3m? Assume the radius of influence of well is 200m and permeability of aquifer is 40m/day. (C.O.NO.2) [Comprehension]
- 9. A 45cm well penetrates an unconfined aquifer of saturated thickness 30m completely. Under a steady pumping rate for a long time the drawdowns in two observation wells 15m and 30m from the well are 5.0m and 4.2 m respectively. If the permeability of the aquifer is 20m/day. Determine the discharge and the drawdown at the pumping well. (C.O.NO.2) [Comprehension]

SCHOOL OF ENGINEERING

Semester: 05

Course Code: CIV308

Course Name: Groundwater Hydrology

Date 16-11-2019 Time: 11am-12pm Max Marks: 40 Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels		Thought provoking type [Marks allotted] Bloom's Levels		Problem Solving type [Marks allotted]		Total Marks			
			К			С		A				
1	2	Module 2	2							1	1	
2	2	Module 2	2				<u> </u>		;		+	
3	2	Module 2	2									
4	2	Module 2	2				<u> </u>					
5	2	Module 2	2				<u> </u>					
1	2	Module 2				6						
2	2	Module 2				6						
1	2	Module 2				9						
2	2	Module 2				9					<u> </u>	
	Total Marks		10			30						40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

SCHOOL OF ENGINEERING

SOLUTION

Semester: 05

Course Code: CIV 308

Course Name: Groundwater Hydrology

Date: 16-11-2019 Time: 11:00am – 12:00pm Max Marks: 40

Weightage: 20%

Part A

 $(5Q \times 2M = 10Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1		2	2 minutes
	A confined aquifer		
	is an aquifer below		
	the land surface that		
	is saturated with		
	water. Layers of		
	impermeable		
	material are both		
	above and below		
	the aquifer, causing		
	it to be under		
	pressure so that		
	when the aquifer is		
	penetrated by a		
	well, the water will		
	rise above the top		
	of the aquifer.		
	Water is under		
	pressure.		
	A water-tableor		
	unconfinedaquifer		
	is an aquifer whose		
	upper water surface		
	(water table) is at		
	atmospheric		
	pressure, and thus is		
	able to rise and fall.		
	Water-table		
	aquifers are usually		
	closer to the Earth's		
	surface than		
	confined aquifers		
	are, and as such are		
	impacted by		
	drought conditions		

	sooner than		
	confined aquifers.		
	Water is not under		
	pressure.		
2	Radius of Influence	2	2 minutes
	means the radial		
	distance from the		
	center of a well		
	bore to the point		
	where there is no		
	lowering of the		
	water table or		
	potentiometric		
	surface because of		
	pumping of the		
	well; the edge of		
	the cone of		
	depression.		
3	A recovery test is a	2	2 minutes
	controlled field		
	experiment		
	performed at the		
	end of a pumping		
	test (constant-rate		
	or step-drawdown)		
	after pumping in		
	the pumped		
	(control) well has		
	ended. Water-level		
	response (residual drawdown) is		
	measured after		
	pumping has		
	stopped in one or		
	more surrounding		
	observation wells		
	and optionally in		
	the control well		
	itself.		
4	If the flow	2	2 minutes
	properties are		
	constant with		
	respect to time, flow		
	can be termed as		
	steady flow.		

	When the flow properties are not constant with respect to time, it can be termed as non-steady flow.		
5	The amount of water furnished under a standard unit head : the amount of water that is furnished under unit lowering of the surface of the water in a well by pumping. SI unit m3/min/m [L2/T]	2	2 minutes

Part B

$(2Q \times 6M = 12Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	K = [Q ln (r2/r1)]/[2pieb(h2-h1)] Where Q = pumping rate R1 and r2 radial distance from the centre of the well H1 and h2 are water level in the well B = saturated thickness of aquifer K= coeff of permeability	3+3	7 minutes
2	When water is pumped out of a well, the total drawdown caused includes not only that of the logarithmic drawdown curve at the well face, but also drawdown caused by flow	3+3	6 minutes

through well screen	
and axial movement	
within the well. The	
latter drawdown is	
called well loss.	
Since turbulent flow	
generally occur near	
the well face, this	
loss may be taken to	
be proportional to	
Qn	
Formation well	
losses	

Part C

 $(2Q \times 9M = 18Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	R= 200m rw = .10m a= 120m B= 12m, s=3m k=40m/day Use k = q ln(R/rw)/(2pieBsw) Putting all the values Q= 1190m3/day Again use K= Q' ln(R^2/rw*a)/(2pieBsw) Putting all values , Q' = 1117m3/day % decrease = 1190-1117/1190 = 6.134%	4.5 + 4.5	10 minutes
2	r1= 15m r2 = 30m s1= 5m s2= 4.2m k= 20m/day rw= 22.5cm = 0.225m use steady state eqn k= Qln(r2/r1)/(Pie(h2^2 - h1^2)) use H= h+s putting all the values we get, Q= 3683.90m3/sec Again apply the eqn between R and rw to get drawdown in the pumping well At r = R, s = 0 At r = rw, s=sw Putting all the values in above eqn we get Sw= 30-hw = 10.54m	4.5 + 4.5	8 minutes

~

Roll No					
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS BENGALURU	ΓY				
SCHOOL OF ENGINEERIN	NG				
END TERM FINAL EXAMINATION					
Semester: Odd Sem. 2019 - 20	Date: 20 December 2019				
Course Code: CIV 308	Time: 9:30 AM to 12:30 PM				
Course Name: GROUND WATER HYDROLOGY	Max Marks: 80				
Program & Sem: B.Tech (CIV) & V (DE–I)	Weightage: 40%				
Instructions: (i) Read the all questions carefully and answer accordingly. (ii) All the questions have to be attempted					
Part A [Memory Recall Question	ons]				
Answer all the sub Questions. Each sub Question carries	2 marks. (10Qx2M=20M)				
1.					
i. What are the various sources of groundwater pollution?	(C.O.No.4) [Knowledge]				
ii. Define flowing well and unsteady flow.	(C.O.No.3) [Knowledge]				
iii. Differentiate between aquitard and aquiclude.	(C.O.No.2) [Knowledge]				
iv. Mention the principle of seismic method of groundwater inve					
	(C.O.No.4) [Knowledge]				
v. Write the various processes involved in a hydrological cy equation.	cle. Relate them with a suitable (C.O.No.1) [Knowledge]				
vi. Runoff coefficient increases as a result of deforestation. Exp	plain why.(C.O.No.1) [Knowledge]				
vii. Explain specific yield and specific retention.	(C.O.No.2) [Knowledge]				
viii. Differentiate between seepage and darcy velocity.	(C.O.No.3) [Knowledge]				
ix. Mention how evaporation and atmospheric pressure affects	groundwater level.				
x. Mention any two strategies for groundwater management.	(C.O.No.1) [Knowledge] (C.O.No.4) [Knowledge]				

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 5 marks.	(4Qx5M=20M)
2. Explain the Dupuit assumptions made while deriving steady flow eq unconfined aquifer?	uations for confined and (C.O.No.3) [Knowledge]
3. Explain groundwater cycle.	(C.O.No.1) [Knowledge]
4. Define sea-water intrusion. List any two causes for the occurrence of relationship between the freshwater depth and interface depth.	this intrusion. Develop a (C.O.No.4) [Knowledge]
5. Explain all the four types of aquifers with neat sketch.	(C.O.No.2) [Knowledge]

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 10 marks. (4Qx10M=40M)

- 6. The plan area of reservoir is 1sq km. The water level in the reservoir is observed to be decline by 20cm in a certain period. During this period the reservoir receives a surface inflow of 10 hectare meters and 20 hectare meters are taken out from the reservoir for various purposes. Evaporation from the reservoir is 8.40cm and rainfall recorded during the same period is 3cm. Calculate the seepage loss from the reservoir in hectare-meters. (C.O.No.1) [Comprehension]
- 7. A 30cm well gives 300 lpm under a drawdown of 2m penetrates an aquifer 3m thick. For the same drawdown, what would be the probable discharge in litres per minute for 20cm well and 40cm well. Assume the radius of influence of 500m in all cases. (C.O.No.3) [Comprehension]
- 8. Determine the ratio of vertical hydraulic conductivity to horizontal hydraulic conductivity for a given three layered soil if the length of the soil specimen is 200m. (C.O.No.2) [Comprehension]

K1 = 0.005m/s	d1= 3m
K2= 0.009m/s	d2= 6m
K3= 0.001m/s	d3= 3m

9. A well is penetrated into a 26m thick layer of sand which is underlain by a rock layer. Water is pumped out of well at a constant rate of 550000litres/hr. water level in the two observation wells situated at 25m and 50m from the test well are found to be 4.7m and 3.6m respectively below the groundwater table. Find the coefficient of permeability of soil.

(C.O.No.3) [Application]

SCHOOL OF ENGINEERING

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit	Memory recall type [Marks allotted]	Thought provoking type [Marks allotted]	Problem Solving type	Total Marks
	(% age of CO)	/Module Title	Bloom's Levels	Bloom's Levels	[Marks allotted]	
			К	С	A	
1 i	4	Module 3	2			
li	3	Module 2	2			
lii	2	Module 1	2			
lv	4	Module 3	2			
V	1	Module 1	2			
Vi	1	Module 1	2	· · · · · · · · · · · · · · · · · · ·		
Vii	2	Module 1	2			
Viii	3	Module 2	2			
lx	1.	Module 1	2			
Х	4	Module 3	2			
2	3	Module 2		5		
3	1	Module 1		5	4 1 100, 8 1004 14	
4	4	Module 3		5		
5	2	Module 1		5		
6	1	Module 1			10	
7	3	Module 2			10	
8	2	Module 1			10	
9	3	Module 2			10	
	Total ma	ırks	20	20	40	80

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Odd Sem. 2019-20 Semester:

Course Code: CIV 308

GROUNDWATER HYDROLOGY Course Name: Program & Sem: B.Tech Civil 7th Semester

Date: 20.12.2019 Time: 3 HRS Max Marks: 80 Weightage: 40%

Part A

 $(10Q \ x \ 2M = 20Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1 i	Sources of pollution-	2	2MIN
	Septic tanks		
	Landfill sites		
	Agricultural sources		
	Saline water intrusion		
	Seepage from canals		
	Hazardous waste		
ii	Flowing well is that well for which Piezometric pressure is above	2	2MIN
	the groundwater level.		
	Unsteady flow is that flow in which flow properties like depth,		
	velocity, discharge changes with respect to time.		
lii	Aquitard- geological formation which is semi permeable but	2	2MIN
	porous		
	Aquiclude is that geological formation which is porous but		
	completely impermeable.		
iv	Principle- measurement of velocity of shock waves through	2	2MIN
	different material is different.		-
v	Precipitation	2	2MIN
	Runoff		
	Infiltration		
	Percolation		
	Base flow		
	Evaporation		
	Evapotranspiration		
	P-R-E-I-ET = Change In Storage		
vi	As deforestation increases, vegetative cover reduces in an area	2	2MIN
	and thus reduces the infiltration and thus runoff increases		
	therefore runoff coefficient increases.		
vii	Specific yield- the amount of water that can be extracted from a	2	2MIN
	given aquifer per unit volume of aquifer against gravity is specific		
	yield		

	Specific retention- the amount of water that is retained in the pores of the soil and can not be taken out through pumping is specific retention.		
Viii	Seepage velocity is velocity of groundwater through the pores of the soil specimen Darcy velocity is the actual velocity through the cross sectional area of the soil specimen	2	2MIN
ix	As evaporation increases, groundwater level reduces As atmospheric pressure increases, water level in the well reduces	2	2MIN
×	Strategies- artificial recharge Rainwater harvesting Recharge wells Injection wells	2	2MIN

Part B

(4Q x 5M = 20 Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
2	ASSUMPTIONS- Flow Is Laminar and darcy law is valid- explaination of darcy law Aquifer is homogenous and isotropic- explaination of the terms Well is a fully penetrating well- penetrates through the entire thickness of the aquifer Flow is radial and steady- flow towards the well and constant wrt time. Coefficient of permeability is constant through the aquifer- isotropic nature Saturated thickness is constant After long hours of pumping, drawdown is constant.	5 EACH ASSUMPTION CARRYING 1 MARK	10MINS
3	It is a sun driven process. 1. Water from the ocean evaporates due to the heat energy provided by the solar radiation. This water vapour moves upwards and form clouds condense and fall back on the ocean as rain. 2. A part of precipitation may evaporate back to the atmosphere while some part may be intercepted by buildings and settlement present on the ground surface. 3. After reaching the ground surface some portion of the water may enter into the soil surface through the process called infiltration and later joins the groundwater table. Infiltration is the movement of water into the earth surface while percolation is the vertical downward movement of water from one layer of soil zone to other layer. 4. Vegetation also sends a portion of groundwater from the earth's surface to the atmosphere by the process called transpiration. 5. Some of the infiltered water may enter the surface water bodies by process called interflow. 6. After filling all the depression storages and detention ponds, the remaining water appears as runoff/ surface runoff/overland flow and ultimately joins the bigger water bodies such as rivers, oceans etc and thus the cycle continues.	5 EACH STEP CARRYING 1 MARK	10MINS

•

•

•

4	Saltwater intrusion is the movement of saline water into	1+2+1+1	10MINS
	freshwater aquifers, which can lead to contamination of drinking water sources and other consequences.		
	Saltwater intrusion occurs naturally to some degree in		
	most coastal aquifers, owing to the hydraulic connection		
	between groundwater and seawater. Because saline		
	water has a higher mineral content than freshwater, it is		
	denser and has a higher water pressure. As a result,		
	saltwater can push inland beneath the freshwater.		
	Causes-		
	Subsidence		
	Decrease in recharge		
	Increase in pumping		
	Climate change		
	Rising of sea water level		
	Changes in the precipitation		
	Control- injection barrier and recharge continuous		
	monitoring of GW		
	Density of fresh water = $1g/cc$		
	Density of sea water = 1.025g/cc		
	Relation – height of freshwater above mean sea level = 40* height of sea water below msl upto interface		
5	A confined (artesian) aquifer is an aquifer bounded both	1+1.5+1+1.5	10MINS
5	at the bottom and at the top by an impermeable stratum		TOMINO
	(aquiclude) and fully filled with water which is usually		
	under (artesian) pressure.		
	2. An unconfined (free, phreatic) aquifer is an aquifer		
	underlain by an impermeable stratum, but the top of the		
	the aquifer consists of soil layers that are permeable		
	enough to provide easy passage of water, at least in		
	vertical sense. Such an aquifer has a free water table or		
	phreatic surface.		
	3. A perched aquifer is separated from another water-		
	bearing stratum by an impermeable layer. Since this		
	type of aquifer occurs above the regional (original) water		
	table, in the unsaturated zone, the aquifer is called a		
	perched aquifer. a perched aquifer is a very small,		
	unconfined aquifer that doesn't contain much water and		
	is only recharged by local precipitation. A well drilled into a perched aquifer usually yields only enough water for a		
	single household.		
	4. Leaky Aquifer- It is a type of confined aquifer in which		
	water is confined between a semi permeable layer i.e.		
	aquitard on the bottom and impermeable layer i.e.		
1	aquiclude on the top or vice-versa		

Part	С
------	---

(4Q x 10M = 40Marks)

•

Q	Solution	Scheme of Marking	Max. Time required for each
N O			Question

.

•

6	Qts) A. Isqkm	10 1 MARK FOR WATER BUDGET	
		EACH STEP CARRIES EQUAL MARKS	20MINS
	9 : 13 kam 8 - 20 kam		
	E = 64 cm		
	p = 3 cm		
	\$ - 7		
	$(p+q) - (q+e+s) = \Delta s$		
	$\left(\frac{3}{100} \times 10^{6} + 10 \times 10^{4}\right) - \left(2 \cup 10^{4} + \frac{94}{100} \times 10^{6} + 5\right)$		
	$= -\frac{20}{100} \times 1\times10^{6}$.		
	$13 \times 10^{4} - 98.4 \times 10^{4} - S = -20 \times 10^{4}$		
	$(13 - 8.4) \times 10^4 = 5$		
	$s = 4.6 \times 10^4 \text{ ham}^3$		
	= 4.6 ham		
7		10	00141110
	Q16) that = 15 cm	10 EACH STEP CARRIES EQUAL MARKS	20MINS
	$\alpha = 300 \text{ Lpm}$	2 MARKS FOR FORMULA	
	$8\omega = 2m$		
	B - 3m.		
	$R = 600 \mathrm{m}$.		
	(or for soom well, a =?		
	$k = a' \ln(R i \tau w)$		
	2 TI B &W		
	21115 00		
	$k = \frac{300 \times \ln(500/0.15)}{100}$		I
	2TI X 3 x 2		
	$= 64.5 \text{ lpm per m}^2$.		
	$b_{4.5} = a \ln (500/0.10)$		
	$b_{4,5} = \alpha \alpha \alpha (300) \alpha (20)$		
tr və bak aktorum bu	2ΠX3X2		

· · · · · ·

.

8	angge	10	20MINS
	8 217) ki = 0.005 m/s du = 3 m	EACH STEP CARRIES EQUAL MARKS	:
	$k_2 = 0.009 m/s$. do = 6 m	2 MARKS FOR FORMULA	
	$m_{1} = m_{1} m_{1} m_{1} m_{2} m_{1} m_{2} m_{1} m_{2} m_{1} m_{2} m_{1} m_{1} m_{2} m_{1} m_{2} m_{1} m_{1} m_{1} m_{2} m_{1} m_{1} m_{1} m_{1} m_{1} m_{2} m_{1} m_$		
	k3 = 0.001 m/s 03 = 3m		
	v - kiaiti i i		
	$k_h = k_1 a_1 + k_2 d_2 + k_3 d_3$		
	$du + d_2 = d_3$		
	kv = dv + dz + dz		
	Prostanting of the Contract of		
	$\frac{d_1}{K_1} + \frac{d_2}{K_2} + \frac{d_3}{K_g}$		
	ru ra kg		
	$k_{0} = 0.005 \times 3 + 0.009 \times 6 + 0.001 \times 3$		
	3+6+3		
	= C.015 + D.054 + 0.003		
	a second s		
	12		
	= 0.006 m/s.		
	- 0.000 iii.		
	kv <u>-</u> 3+6+3		
	$\frac{3}{0.005} + \frac{6}{0.009} + \frac{9}{0.001}$		
	0.002 0.002		
	- 12		
	(6001 6 +600)		
	(0007 0.009		
	$= \frac{12}{(600 + \frac{6}{0.009} + 600)}$ = 2.8125 × 10 ⁻³ m/3		
	· · ·		
	0.46875.		
	$\frac{1}{8} = \frac{3}{6}$		
L		<u> </u>	l

· · · · ·

.

9	Q18) B=26m	10 EACH STEP CARRIES EQUAL MARKS 2 MARKS FOR FORMULA	20MINS
	a = 55000011hz		
	fy = 26 m		
	$H_2 = 60 \text{ m}$		
	$\lambda_1 = 4.7m$		
	82 = 3.6 m		
	$k=?$ $k=aln(h_1/h_2)$ $2\pi B \times (b_2 - b_1^2)$		
	$k = \frac{55 \times 10^4 \times 10}{2 \pi \times 26 \times 10^{-1}}$		
	$= 2!2! \cdot 49 \times 10^{-3} \text{ m} + 44$ $= 2!2! \text{ m} + 44$		

· · · · · · · ·