	Roll No.				l.						
PRESIDENCY U BENGAL		Y Y									
SCHOOL OF EN	NGINEEF	NNG									
TEST											
Sem & AY: Odd Sem. 2019-20				D	ate:	01.1	0.20	19			
Course Code: CIV 216				Т	ime:	1:00)PM t	to 2	:00F	РΜ	
Course Name: HYDROLOGY AND WATER RESOURC	CES ENGINE	ERIN	G	Μ	lax N	/lark	s : 40				
Program & Sem: B.Tech, (CIV) & VII				W	/eigł	ntage	e: 20'	%			
Instructions: i. Question paper consists of 3 p ii. Scientific and Non-programma		ators	are	perm	nittec	Profiles					
Part A [Memory Re	call Quest	tions	Bruastadi								
Answer all the Questions. Each Question of	carries fou	ir ma	rks.			3Qx4	M=1	2M)	-dollar.		
1. Define			(C	.0.N	10.1)) [Kni	owled	dge]		
a) Hydrology											
b) Precipitation											
c) Hyetograph											
d) Raingauge											
2. List the forms of precipitation.			(C	.0.N	0.1)	[Kno	owlec	(egt			
3. Write the water budget equation for a c	atchment a	ind e	xpar	nd its	tern	ns.					
			(C	.0.N	0.1)	[Knd	owled	ˈɡe]			
Part B [Thought Prov	oking Que	stio	ns]								
Answer both the Questions. Each Question	n carries s	ix ma	arks	ĸ	(2	Qx6	M=1;	2M)			
 Symon's raingauge is the non-recording Describe the Symon's raingauge with a 		:h.	-				hens	ion]			

5. The rain gauge station D was in operative for a part of a month during storm occurred. The storm rainfall recorded at the three surrounding stations A, B, and C was 91.11, 72.23, and 79.89 cm respectively. If the average normal annual rainfall of the stations A, B, C, and D are 80.97, 67.59, 76.28 and 92.01 cm respectively. Estimate the storm rainfall at station D. (C.O.NO 1) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M)

A catchment has six raingauge stations. In a year the annual rainfall recorded by the gauges are as follows:

Station	A	В	С	D	E	F
Rainfall (cm)	82.6	102.9	180.3	110.3	96.8	136.7

For a 10% error in the estimation of the mean rainfall. Calculate the optimum number of stations in the catchment. Also find the additional number of raingauges. (C.O.NO.1) [Comprehension]

7. Determine the average precipitation by arithmetic mean method and thiessen polygon method for the given data: (C.O.NO.1) [Comprehension]

Raingauge station	Area of thiessen polygon (km ²)	Precipitation (cm)
A	48	3.8
В	30	3.4
C	36	2.6
D	40	2.9
· E	35	2.8
F	30	3.62

SCHOOL OF ENGINEERING

Semester: VII Course Code: CIV 216 Course Name: Hydrology and Water Resources Engineering

Date: 01/10/2019 Time: 1 hour Max Marks: 40 Weightage: 20%

Extract of question distribution [outcome wise & level wise] Memory recall type Thought

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title		[Mark	y reca ks allo m's Le		pro [Ma	Thought provoking type [Marks allotted] Bloom's Levels		Problem Solving type [Marks allotted]		Marks
					K		E 2 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C			С	
1	1	Module 1	1	1	1	1						4
2	1	Module 1	4		-	, 	1					4
3	1	Module 1	4	1	-			-	+			4
4	1	Module 1			-		6	-				6
5	1	Module 1	· ·	• •	-		6					6
6	1	Module 1								8		8
7	1	Module 1		-				-		8		8
	Total Marks		· · · · · · · · · · · · · · · · · · ·	-								40

K - Knowledge Level 0 - Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines .Bhavya N]

Reviewers' Comments

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Part A

Semester: VII Course Code: CIV 216 Course Name: Hydrology and Water Resources Engineering Date: 01/10/2019 Time: 1 hour Max Marks: 40 Weightage: 20%

(3Q x 4 M = 12 Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	a) Hydrology:	4X1M=4	4 MINS
	It is the science that deals with the occurrence,		
	circulation and distribution of water of the earth and earth's atmosphere.		
	b) Precipitation: Any form of water falling from the atmosphere to the earth.		
	c) Hyetograph: A <u>hyetograph</u> is a plot of the intensity of rainfall against the time		
	d) Rain gauge: A device used to measure the rainfall at a place.		

		:	
2	a) Drizzle	Any 8 forms	4 MINS
	b) Rain	8X1/2M = 4M	
1	c) Snow		
	d) Sleet		
	e) Glaze		
	f) Hail	r	
	g) Mist		
	h) Fog	1	
	i) Dew		
	j) Frost		
3	The water budget of a catchment for a time	2 M for	4 MINS
	interval Δt is written as:	formula	
	$\mathbf{P} - \mathbf{R} - \mathbf{G} - \mathbf{E} - \mathbf{T} = \Delta \mathbf{S}$		
	P = Precipitation, R = Surface		
	runoff, $G = net$ ground water flow out of	2	
ļ	the catchment, $E = Evaporation$, $T =$	4	
	Transpiration, and $\Delta S =$ change in		
	storage		

Part B

$(2Q \times 6M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
GL 777		2 M	10 MINS
		4X1M=4M	

	 Commonly used non-recording type raingauge in India. It essentially consists of a circular collecting area of 12.7 cm diameter connected to a funnel. The rim of the collector is set in a horizontal plane at a height of 30.5cm above the ground level. The funnel discharges the rainfall catch into a receiving vessel. The funnel and receiving vessel are housed in a metallic container. Water contained in the receiving vessel is measured by a suitably graduated measuring glass. 		
2	The normal annual rainfall at missing station D, ND=92.01cm		10 MINS
	+ or – 10% Range of normal value of ND		
	ND +10% of ND=92.01+10%(92.01)=101.211cm	2 M	
	ND-10% of ND=92.01-10%(92.01)=82.801cm		
	The normal annual rainfall values at neighboring stations A,B and C are out of range of ND Hence adopt Normal Ratio Method	l M	
	$\frac{PD}{ND} = 1/m \left[\frac{PA}{NA} + \frac{PB}{NB} + \frac{PC}{NC} \right]$	2 M	
	$\frac{PD}{92.01} = 1/3 \left[\frac{91.11}{80.97} + \frac{72.23}{67.59} + \frac{79.89}{76.28} \right]$		
	<i>P</i> _D =99.4cm	l M	

Part C

(2Q x 8M = 16Marks)

	Q			C.L. C	
	-	a		Scheme of	Ν
	No	Solution		Marking	re
					i
ť					

		1	
Made - o suman vande vilage og	$\overline{P} = \frac{(82.6 + 102.9 + 180.3 + 110.3 + 98.8 + 136.7)}{6} = 118.6 \ cm$	I M	
	$\sigma_{m-1} = \sqrt{\frac{\sum_{1}^{m} (P_i - \overline{P})^2}{m-1}}$	2 M	and a second
	$\sigma_{m-1} = \sqrt{\frac{(82.6 - 118.6)^2 + (102.9 - 118.6)^2 + \dots + (136.7 - 118.6)^2}{6 - 1}}$		
	$\sigma_{m-1} = 35.04 \ cm$		
	$C_{\nu} = \frac{100 \times \sigma_{m-1}}{\bar{P}} = \frac{100 \times 35.04}{118.6} = 29.54\%$	2 M	
	$N = \left(\frac{C_v}{\varepsilon}\right)^2 = \left(\frac{29.54}{10}\right)^2 = 8.7 \approx 9$	2 M	namena and a second
	Additional raingauges required = $9-6 = 3$	1 M	
2	Arithemetic mean method:		1
	$\bar{P} = \frac{(P1 + P2 + P3 + P4 + P5 + P6)}{m}$	2 M	
	<i>''</i>		l
	$\bar{P} = \frac{(3.8 + 3.4 + 2.6 + 2.9 + 2.8 + 3.62)}{6}$	1 M	
	$\vec{P} = 3.18cm$	1 M	
		1 111	
	Thiessen polygon method:		
	$\overline{P} = \frac{(P1 \times A1 + P2 \times A2 + P3 \times A3 + P4 \times A4 + P5 \times A5 + P6 \times A6)}{(A1 + A2 + A3 + A4 + A5 + A6)}$	2 M	
	$\bar{P} = \frac{(3.8 \times 48 + 3.4 \times 30 + 2.6 \times 36 + 2.9 \times 40 + 2.8 \times 35 + 3.62 \times 30)}{(48 + 20 + 26 \times 40 + 26 \times 40 + 27)}$	1 1 4	
	(48 + 30 + 36 + 40 + 35 + 30)	1 M	
	$\bar{P} = 3.19 \ cm$	1 M	
L			

.

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Course Code: CIV 216

Date: 19 11 2019 Time: 1.00 PM to 3.00 PM Course Name: HYDROLOGY AND WATER RESOURCES ENGINEERING Max Marks: 40 Weightage: 20%

Program & Sem: B. Tech - 7th Semester

Instructions:

- Read the question properly and answer accordingly. *(i)*
- Scientific and Non-programmable calculators are permitted. (ii)
- Write appropriate units for Numericals. (iiii)

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries three marks. (4Qx3M=12 M)

- 1. List the 6 hydrologic losses (abstractions).
- 2. Define Pan- Coefficient and write is equation. (C.O.NO.2)[Knowledge]
- 3. Define Infiltration, Infiltration capacity, Soil and Soil Hydraulic Conductivity in one sentence (C.O.NO.2)[Knowledge]
- 4. Write the Horton's Infiltration equation and expand the variables in it.

(C.O.NO.2)[Knowledge]

(C.O.NO.2)[Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each question carries four marks. (2Qx4M=8M)

Explain briefly why evaporation and transpiration are combined into one term.

(C.O.NO.2)[Comprehension]

6. How is \$\phi\$- index different from W- Index. Use the help of equations to differentiate between the same. (C.O.NO.2)[Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions.

7. A storm with 10cm precipitation produced a direct runoff of 5.8cm. The rainfall intensities for 8 hour duration for hourly duration were 0.4, 0.9, 1.5, 2.3, 1.8, 1.6, 1 and 0.5 cm/h. Estimate the suitable infiltration index of the storm and tabulate the raingall excess table. [6MI](C.O.NO.2)[Comprehension]

(3Q=20M)

8. Estimate the Potential Evapotranspiration of an area for the season November to February in which wheat is grown. The area is north India at a latitude of 30^oN with mean monthly temperature and percentage sunshine hours as below. Take crop coefficient as 0.65 for wheat.

Month	Nov	Dec	Jan	Feb
Temp in °C	16.5	13	11	14.5
Monthly Sunshine hours	7.19	7.14	7.30	7.03

[8M](C.O.NO.2)[Comprehension]

9. Calculate the suitable type of evaporation from a lake using the rainfall data observed from Class A Pan. Assume Pan Coefficient as 0.75.

Day	Rainfall (mm)	Water Added (mm)
1	6	8
2	0	12
3	16	-5
4	3	10
5	5	9

[6M](C.O.NO.2)[Comprehension]

SCHOOL OF ENGINEERING

Course Name: Hydrology and Water Resources Engineering

Semester: 7th Course Code: CIV 216

Date: 19/11/2019 Time: 1 Hour Max Marks: 40 Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title		Thought provoking type [Marks allotted] Bloom's Levels C	Problem Solving type [Marks allotted] C	Total Marks
1	2	2	3			3
2	2	2	3	-	-	3
3	2	2	3	-		3
4	2	2	3		_	3
5	2	2	_	4		4
6	2	2	_	4	-	4
7	2	2	-		8	8
8	2	2	-		6	6
9	2	2	-		6	6
	Тс	otal Marks	12	8	20	40

SCHOOL OF ENGINEERING

SOLUTION

Semester: 7th

Course Code: CIV 216

Course Name: Hydrology and Water Resources Engineering

	Part A	(4Q x 3M = 12 Marks)				
Q No	Solution	Scheme of Marking	Max. Time required for each Question			
1	Interception Evaporation Transpiration Depression Detention Infiltration	0.5 mark for each loss	2 Mins			
2	Rate of reservoir evaporation to pan evaporation is called the pan coefficient. Pan coefficient = <u>Actual evaporation from reservoir</u> Measured evaporation from pan	2 Marks for Definition 2 Marks for equation	3 Mins			
3	Infiltration: process by which water enters the soil surface Infiltration capacity: maximum rate at which water can enter the soil Soil Hydraulic Conductivity: movement of water through soil (saturated and unsaturated flow) Soil Water: water held in soil pores	1 Mark for each definition	4 Mins			
4	Hortons Infiltration Equation $f = f_c + (f_0 - f_c) e^{-kt}$ fo – initial infiltration capacity\ T – time since the start of rainfall K –constant depending upon type of soil and condition of vegetable cover. fc- Minimum infiltration capacity related to hydraulic conductivity of the soil.	2 Marks for formula 2 Marks for expanding the variables	3 Mins			

Date: 19/11/2019 Time: 1 Hour Max Marks: 40 Weightage: 20%

-

40 81-----(40 0.8.5

(2Q x 4M = 8Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	Evapotranspiration (ET) is the sum of water used by plants in a given area in transpiration and the water evaporated from the adjacent soil area. While transpiration takes place from the vegetation, the land area where these plants stand also lose moisture by evaporation of water from soil and water bodies. As it is difficult to separate these two losses in cropped fields, in designating water use by crops evaporation and transpiration are combined into one term called Evapotranspiration (ET) or Consumptive Use (CU).	2 Marks for difference. Bold face sentence carries 2 marks	6 Mins
6	The W – index can be derived from the observed rainfall and runoff data. It differs from the ϕ -index in that it excludes surface storage and retention. ϕ - index = (P-R) /t W-index=(P-R-S)/t where P=total storm precipitation (cm) R=total surface runoff (cm) S=depression and interception losses (cm) t=time period (in hours)	1 Mark for difference 1 Mark for each formula 1 Mark for Variables	6 Mins

Part C

(20 Marks)

Q No	Solution		Scheme of Marking	Max. Time required for each Question			
	Total I	nfiltration = 10 – 5.	8 = 4.2cm	1 Mark			
	φ = 4.2 / 8 = 0.525 cm/hr			1 Mark			
7	Infiltration = (10 - 5.8 - 0.4 - 0.5) = 3.3cm			1 Mark	10 Mins		
	Modified ϕ = 3.3 / 6 = 0.55 cm/hr			1 Mark			
	Rainfa	Il excess Table		2 Mark for table			
	Nov –	T =61.7, f = 4.43, ι	u = 2.87	2 Marks			
8	Dec –	T =55.4, f = 3.95,	u = 2.56	2 Marks			
Ŭ	Jan – ⁻	T =51.8, f = 3.78, u	1 = 2.45	2 Marks	8 Mins		
	Feb –	T =58.1, f = 4.08, ι	ı = 2.65	2 Marks			
	Day	Evaporation	Lake Evaporation				
		Loss		1 Mark for Pan			
	1	14	10.5	coefficient formula 0.5 mark for Evaporation	10 Mins		
9	2	12	9	Loss and Lake			
	3	11	8.25	Evaporation calculation			
	4	13	9.75	for each day respectively			
	5	14	10.50				

					<u>г </u>			1 1			
Z		Roll No									
GAIN MORE ENOWLEDGE REACH GREATER HEIGHTS	PRESIDENC	Y UNIVER GALURU	RSIT	Y							
	SCHOOL OF		ERIN	<u>IG</u>							
	END TERM FIN		NATI	ON							
Semester: Odd Semester: 2019	- 20					Date	: 28 E)ece	embe	er 201	19
Course Code: CIV 216						Time	e : 9:30) AM	1 to 1	12:30	PM
Course Name: HYDROLOGY A		URCES ENG	INEE	RIN			Mark				
Program & Sem: B.Tech (CIV) &						Weig	ghtag	e: 40	<u>)%</u>		
Instructions: (i) Read the all question (ii) All the questions have	•	swer accordi	ngly.								
	Part A [Memory	Recall Que	estio	ns]							
Answer all the Questions. I	Each Question c	arries 2 ma	rks.					(10	Qx2	2 M=2	20 M)
1.										·	
i. What are the three differe	nt types of canals	based on a	lignm	nent	t?	(C	.O.N	o.4)	[Kn	owle	dge]
ii. Differentiate between Act	ual Evapotranspir	ration and P	otent	ial e	evap		anspii .O.No			owle	dge]
iii. List the different types of	precipitation?					(C	.O.N	o.1)	[Kn	owle	dge]
iv. List the various compone	ents of diversion h	eadworks.				(C	.O.N	o.4)	[Kn	owle	dge]
v. Define unit hydrograph.						(C	.O.N	0.3)	[Kn	owle	dge]
vi. List the various flood cor	trol methods.					(C	.O.N	o.3)	[Kn	owle	dge]
vii. List any four factors affe	cting runoff.					(C	.O.N	o.3)	[Kr	nowle	dge]
viii. What are the different fa	actors affecting ev	vaporation?				(C	.O.N	o.2)	[Kn	owle	dge]
ix. List the various raingaug	es used for meas	uring rainfal	11.			(C	.O.N	o.1)	[Kn	owle	dge]
x. Name the method of irriga	tion that will be us	sed for easil	y ero	dibl	e so		.O.N	o.4)	[Kn	owle	dge]
P	art B [Thought F	Provoking (Ques	tion	ıs]						
Answer all the Questions.	Each Question c	arries 5 ma	rks.					(4	Qx!	5M=2	20 M)

2. Define flood routing, attenuation and lag time. What are different types of flood routing? (C.O.No.3) [Comprehension]

- 3. Define duty, delta and base period. The duty for a crop is 432 hectares/cumecs, when base period of the crop is 100 days. Determine the delta of the crop. (C.O.No.4) [Comprehension]
- 4. Explain water logging and suggest various methods to control waterlogging (C.O.No.4) [Comprehension]
- 5. Define hydrograph, hyetograph and mass curve. Explain the different components of hydrograph. (C.O.No.3) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 8 marks.

(5Qx8M=40M)

- 6. A 6 hour storm produced rainfall intensities 7, 18, 25, 12 10 and 3mm/hr in successive one hour intervals over a basin of 800 sq km. the resulting runoff is observed to be 2640ha-m. Determine phi index for the basin.
 (C.O.No.2) [Application]
- 7. The ordinates of a 2 hour unit hydrograph for a catchment are given as following. Find the ordinates of 4-hour unit hydrograph. (C.O.No.3) [Application]

Time(hours)	Discharge(m ³ /sec)
0	0
2	10
4	15
6	25
8	10
10	0

- 8. A water course has gross command area of 5200ha out of which 80% is culturable. The intensity of irrigation for two crops rice and wheat are 20% and 40% respectively. The duty for these crops at the head of the watercourse are 800ha/cumec and 1800ha/cumec respectively. Find the discharge required at the head of the watercourse if the peak demand is 120% of the average requirement. (C.O.No.4) [Application]
- 9. A lake has a plan area of 100hectare. The water level in the lake is observed to decline by 20cm in month of February 2016. During this period the lake receives an inflow of 15 ha-m and outflow of 25ha-m occurs from the lake. The pan evaporation is recorded as 12cm from Class A plan and rainfall recorded is 3cm respectively. Find out the seepage loss from the lake in this month? (C.O.No.1) [Application]
- 10. A one hour unit hydrograph is triangular in shape with peak discharge of 50m3/sec at 10 hours and time base is of 30 hours. Find out the area of catchment. If rainfall of 5cm occurs in one hour and phi- index is 5mm/hr, find the peak discharge due to this storm.

(C.O.No.3) [Application] Page 2 of 2

Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: Odd Sem. 2019-20

Course Code: CIV 216

Course Name: HWRE

Program & Sem: B.Tech Civil 7th Semester

 Date:
 28.12.2019

 Time:
 3 HRS

 Max Marks:
 80

 Weightage:
 40%

Part A

 $(10Q \ x \ 2M = 20Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1 i	Watershed/Ridge canal Side slope canal Contour canal	2	2min
li	PET- It is defined as the evapotranspiration from a large vegetation covered land surface with adequate moisture availability at all times. AET- The evapotranspiration actually occurring in a specific situation is called AET	2	2min
lii	Convective precipitation Cyclonic precipitation Frontal precipitation Orographic precipitation	2	2min
lv	Any 4 of them a) Weir b) Divide wall c)Fish ladder d)Approach channel e) Under sluice/ scouring sluices f) River training works/Marginal bunds g)Head regulators	2	2min
V	Unit hydrograph is a direct runoff hydrograph resulting from one unit (one inch or one cm) of constant intensity uniform rainfall occurring over the entire watershed.	2	2min
Vi	 Structural measures: Storage and detention reservoirs • Levees (flood embankments) Flood ways (new channels) • Channel improvement Watershed management Non-structural methods: Flood plain zoning •Flood forecast/warning Evacuation and relocation • Flood insurance 	2	2min
Vii	Any 4 of them: Drainage density Slope of catchment	2	2min

	Rainfall duration and intensity Land use land cover Stream order		
	Urbanization Shape of catchment		
Viii	 Factors affecting Evaporation 1. Vapour pressure difference 2. Temperature of air and water. 3. Wind Velocity: 4. Quality of water. 5. Atmospheric pressure and Altitude 6. Depth of water body 	2	2min
Ix	Recording raingauge- Tipping bucket, weighing balance, natural syphon type Non recording - Symon	2	2min
Х	Sprinkler and drip irrigation	2	2min

		(-=	
Q No	Solution	Scheme of Marking	Max. Time required for each Question
2	Flood routing is the technique of determining the flood hydrograph at a section of a river by utilizing the data of flood flow at one or more upstream sections. Attenuation: The peak of the outflow hydrograph will be smaller than that of in-flow hydrograph. This reduction of peak as the wave pass through a reservoir or channel is known as attenuation. Time lag: The peak of the outflow occurs after the peak of inflow; the time difference between the two peaks is known as time lag. two broad categories of routing can be recognized. These are: 1. Reservoir routing, and 2. Channel routing.	1+1.5+1.5+1	15min
3	The depth of water required by the plant for its full growth is delta The area of land that can be irrigated by one cumecs of water is called duty. Hectares/cumecs The time taken from first watering to last watering is called base period. Time of irrigation is base period in days. Delta = 8.64* base period / duty Delta = 8.64* 100/ 432= 2metres	2+3	15min
4	An agricultural land is said to be water logged when the soil pores within the root zone of the crops are saturated to such an extent that normal circulation of air within the soil pores is totally cutoff. Effects of water logging: any 3 a) Absence of aeration in root zone of the plants	1+2+2	15min

•

•

.

٠

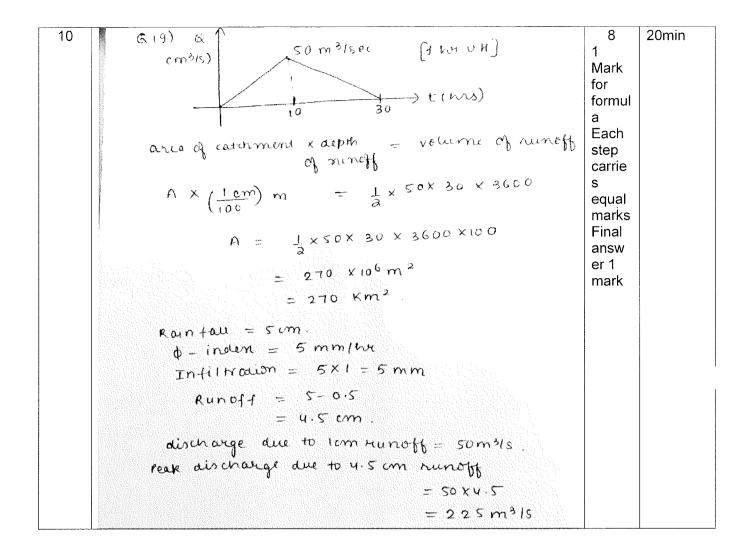
Part B

⁽⁴Q x 5M = 20 Marks)

	 b) Difficulty in cultivation operations c) Growth of weeds and aquatic plants d) Rise of salts in surface layers e) Leaching losses f) Restricted root growth g) Lower soil temperature: Microbe and , mosquito breeding h) Dampness causes plant diseases. Prevention- a)Reducing percolation from irrigation canals, water courses and fields b) Encouraging economical use of water c) Increasing outflow from the groundwater reservoir 		
5	Discharge versus time plot is called hydrograph Intensity of rainfall versus time is called hyetograph Accumulated rainfall versus time is called mass curve. Components of hydrograph Rising limb- depends on rainfall and catchment Recession limb- depends on catchment characterstics Crest segment- carries the peak discharge.	1+1+1+2	15min

	Part C	(5Q x 8M = 40Marks		
Q No	Solution	Max. Sche Time me of required Marki Questior ng		

•


•

•

	R	(s) ,	1 6 C.A	~5			8	
6		10	ital Adir	rau - Cr	4 (8 + 25 + 1	2 + (0 + 3)	1	
					5 cmm	1.1.1	Mark	20min
		,	nneo ar	havin - 1			for	
				· > 646			formul	
	ē T				2640 × 104	ma ³	a	
			25		900 X 1		Each	
		16			33mn	n	step carrie	
			1 +	12 10_			S	
	-				3		equal	
						3	marks	
						time	Final	
	Trial	1 -> /	assume	where pro	icipi tation	۲ŋ .	answ	
	contrib	uting	to nun	noth			er 1	
		41					mark	
			- 75	- 33 = 4	$\frac{12}{c} = 7 \text{ mm} l$	n		
	But 1St	· · cth	nour	$\frac{-33}{6} = \frac{1}{2}$	is not con	ntributing		
	+0 ~	unoff			\sim			
		Pe	- 75	_7-3 =	· • •			
1					C C	~~ ~~ I ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	N8 (
		\$2	= 9	<u>; 5-33</u> =	$\frac{3^2}{4} = 8^{\gamma}$	nm[h. ·		
		\$2.	= 9	<u>4</u> intensitio	$\frac{32}{4} = 87$	reits		
	au So .	the u	= (ain-fall = 8 m	intensitio	$\frac{32}{4} = 87$	nm h. re.itg		
7	ous 50 y	the 4	ain-fau = 8 m	intensition m/h.	us are abov	re ttg	8	20mir
7	so,	the 4	ain-fau = 8 m	intensition m/h.	Uhh	DRU YWU	8 1	20mir
7		time	ainfau = 8 m 2 hy Uk	intensition m/h.	Uhh	re ttg	8 1 Mark	20mir
7	so,	the 4	2 h4 U1 0	1 2 Wr UM 1 agged b	by 2 hrs 0	DRU YWU	1	20mir
7	so,	time	ainfau = 8 m 2 hy Uk	intensition m/h.	Uhh	DRU YWYU	⁴ 1 Mark	20mir
7	so,	time 2	2 h4 U1 0 10	1. 2 bi UM 1. 2 bi UM 1. 1agged b	y 2 WY 0 10	DRU YWU	⁴ 1 Mark for formul a	20mir
7	so,	time O	2 h4 U1 0	1. 2 Wi UM 1. 2 Wi UM lagged b 0 10	y 2 WY 0 10 25	DRU UWU DRU UWU O' 5 12.5	⁴ 1 Mark for formul a Each	20mir
7	so,	time 0 2 y	2 h4 U1 0 10	1. 2 bi UM 1. 2 bi UM 1. 1agged b	y 2 WY 0 10	DRU YWU DRU YWU 0 [°] 5	⁴ 1 Mark for formul a Each step	20mir
7	so,	time 0 2 4 6	ainfall 2 8 m 2 hy Ul 0 10 15 25	intensition m/h 1. 2 Wr UH tagged b 0 10 15	2 5 200 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	DRU YWYU O' 5 12.5 20	⁴ 1 Mark for formul a Each step carrie	20mir
7	so,	time 0 2 y	2 hy Ur 2 hy Ur 0 10 15	1. 2 Wi UM 1. 2 Wi UM lagged b 0 10	y 2 WY 0 10 25	DRU UWU DRU UWU O' 5 12.5	1 Mark for formul a Each step carrie s	20mir
7	so,	time O 2 4 6 8	ainfall 2 hg Ul 0 10 15 25 10	intensition m/h 1. 2 Wi UM lagged b 0 10 15 25	2 5 10 2 5 40 35	DRU YWYU O' 5 12.5 20 17.5	1 Mark for formul a Each step carrie s equal	20mir
7	so,	time 0 2 4 6	ainfall 2 8 m 2 hy Ul 0 10 15 25	intensition m/h 1. 2 Wi UM lagged b 0 10 15 25	2 5 200 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	DRU YWYU O' 5 12.5 20 17.5 5	1 Mark for formul a Each step carrie s equal marks	20mir
7	so,	time O 2 4 6 8	ainfall 2 hg Ul 0 10 15 25 10	intensition m/h 1. 2 Wi UM lagged b 0 10 15 25	2 5 10 2 5 40 35	DRU YWYU O' 5 12.5 20 17.5	¹ 1 Mark for formul a Each step carrie s equal marks Final	20mir
7	so, R (6)	time O 2 4 6 8	ainfall 2 hg Ul 0 10 15 25 10	intensition m/h 1. 2 Wi UM lagged b 0 10 15 25 10	y 2 WY 0 10 25 40 35 10 0.	DRU YWYU O' 5 12.5 RO 17.5 5 0	¹ 1 Mark for formul a Each step carrie s equal marks Final answ	20mir
7	so,	time O 2 4 6 8	ainfall 2 hy Uk 0 10 15 25 10 0	intensition m/h 1. 2 Wi UM lagged b 0 10 15 25 10	y 2 WY 0 10 25 40 35 10 0.	DRU YWYU O' 5 12.5 20 17.5 5	¹ 1 Mark for formul a Each step carrie s equal marks Final	20mir
7	so, R (6)	time O 2 y 6 8 10	ainfall 2 hg Uk 0 10 15 25 10	intensition m/h 1 2 Wi UM lagged b 0 10 15 25 10 0 4 6	es are ason py 2000 0 10 25 40 35 10 0. 8 10	DRU YWYU O' 5 12.5 RO 17.5 5 0	1 Mark for formul a Each step carrie s equal marks Final answ er 1	20mir

· · · · · · · ·

8	H = 6200 ha	8	20min
	$C_{CA} = 0.80 \times 5200 = 4160 ha$	1 Mark	
	Alley under side $\frac{20}{100} \times 0.8 \times 5200 = 832 \text{ hg}$	for formul	
	and under wheat $= \frac{40}{100} \times 0.8 \times 5200 = 1664 ha$	a Each	
	Duty for nee = 800 ha/cumer	step carrie	
	discharge reqd = $\frac{832}{800}$ = 1.04 m ³ /s	s equal marks	
	duty for wheat = 1800 hal umec	Final answ er 1	
	discharge ried = $\frac{1664}{1800} = 0.924 \text{ m}^{3/3}$	mark	
	Design discharge = 1.04 m3/s Peab damand = 10 z is cD dasi		
	Peak demand = 120% of design		
	$=\frac{120}{100} \times 1.04$		
	= 1.248 m ³ /sec		
9	Q18) Anea = 100 ha	8 1	20min
	$\Delta S = -20 \text{cm}$	ו Mark	
	$\mathbf{I} = 1\mathbf{S}\mathbf{n}\mathbf{a} - \mathbf{m}$	for	
	a = 25 ha - m	formul	
	$E_p = 12 \text{ cm} \text{ class A}$	a Each	
	$\mathbf{P} = 3 \mathbf{cm}$.	step	
	seepage loss.	carrie	
	$=)) (P+\Phi) - (\Theta + \epsilon) - S = \Delta S$	S	
	$(3 + \frac{15}{100} \times 100) - (\frac{25}{100} \times \frac{10}{100} \times 12 \times 0.7) - S = -20$	equal marks Final	
	18 - (25 + 84 - 5) = -20	answ er 1	
	$.38 = 25 \pm 8.4 - 5$	mark	
	s = 38 - (334)		
	= '21. E cm		
	Seepage Loss = $\frac{4.6}{100} \times 100$		
	= 4.6 ho-methes:		1

