le ter
- Wester
Andrew water
364
A CONTRACTOR OF THE PARTY OF TH
AND THE PERSON NAMED IN COLUMN
and the second second
and the second second
Consideration Constitution Cons
China had a late of the control of the
CARS FRORS KNOWLEDGE
LITADE GACATER OF CHTS

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem 2019-20

Course Code: CSF 404

Course Name: SOCIAL NETWORK ANALYTICS

Program & Sem: B.Tech & VII OE

Date: 28.09.2019

Time: 9:30 to 10:30 AM

Max Marks: 40

Weightage: 20%

instructions:

(i) Read the question properly and answer accordingly

(i) Question paper consists of 3 parts.

(ii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries six marks.

(3Qx6M=18M)

1. Define 'density' of a network with suitable example.

(C.O.NO.1) [Knowledge]

- 2. Describe the steps to compute Eigen vector centrality of a node in a network graph. (C.O.NO.1) [Knowledge]
- 3. State the differences between walks, trails and paths in a network graph with proper illustration. (C.O.NO.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries five marks.

(2Qx5M=10M)

4. 'Closeness centrality measures global position of a node, whereas degree centrality captures such position locally' – review the statement.

(C.O.NO.1) [Comprehension]

5. Eigenvector centrality overcomes one important drawback of other centrality measures-discuss.

(CO.NO.1) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each Question carries six marks.

(2Qx6N=12Ni)

6. Interpret the network data of the following directed graph (Figure 1) in the form of an edgelist and an adjacency matrix. (C.O.NO.1) [Application]

Figure 1

7. For the following network graph (Figure 2), compute Betweenness for node 2 and node 3. (C.O.1) [Application]

Figure 2

SCHOOL OF ENGINEERING

TEST - 1

Semester: VII

Course Code: CSE 404

Course Name: Social Network Analytics

Program & Sem. B.Tech & VII

Date: 28.09.2019

Time: 9:30 to 10:30 AM

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	/Module Title	Memory recall type [Marks allotted] Bloom's Levels		prov [Ma	rks all	type otted]	Problem Solving type [Marks allotted]		Total Marks		
			K	С	Α	K	С	Α	K	С	A	
1	CO1	Module 1	06	-	_			r • · · · · · · · · · · · · · · · · · ·	and the second		1	6
2	CO1	Module 1	06	-	-						-	6
3	CO1	Module 1	06	-				; ;	;		·	6
4	CO1	Module 1		: : :		-	05		,			5
5	CO1	Module 1					05	_			The second secon	5
6	CO1	Module 1						1 1111 1111 1111	_	-	06	6
7	CO1	Module 1	ļ	;						-	06	6
	Total Marks		18	· Canada do Canada Constante Constan			10	:			12	40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

[I hereby certify that All the questions are set as per the above guide lines. Mr. Tapas Guha]

Reviewers' Comments

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: VII

Course Code: CSE 297

Course Name: Social Network Analytics

Program & Sem: B.Tech & VII

Date: 28.09.2019

Time: 9:30 to 10:30 AM

Max Marks: 40

Weightage: 20%

Part A

 $(3Q \times 6M = 18 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Basic description. number of nodes (n/V) number of edges (m/E) directed/undirected/bipartite/weighted (note in simple graphs there are no multiple edges (ie. several undirected edges between the nodes) and self (eg. edges from node A to A)		
	density Number of edges present in the network		* * * * * * * * * * * * * * * * * * *
	For instance, for a network G with VrG)=35. ErG)=110, network density 110/(35(35-1)/2)=0. Density of 0.05 represents the ratio of links present in relation to all that could be, with the indensity of 1. Density metric is highly dependent on the order and size of the network. Higher density indicates higher level of interconnectivity in the network is elimany different who with a term of the phenomenon the network can be exchanged interconnectivity should be in in relation to the phenomenon the network represents	rays as to	

4	⊏igenvector centrality	2 marks for basic 6 mins
AND THE RESIDENCE OF THE PARTY	 Suggested by Bonacich (1972) Problem, what if the node has high degree but all of its connections are not well-connected to the rest of the network. Shouldn't centrality be defined by how well-connected your connections are? Eigenvector centrality = A node is central to the extent that the node is connected to others who are central. Eigenvector centrality measure is based on walks. Starts by assigning centrality score or 1 to all nodes (vi = 1 for all i). Recomputes scores of each node as weighted sum of centralities of all nodes in a node's neighborhood: vi = xijvi. Normalizes v by dividing each value by the largest value. Repeat steps 2 and 3 until values of v stop changing. 	discussion + 4 marks for computational steps.
3	• Walk (nodes and edges can be repeated). B -> A -> D -> A (what is not seed	3 marks for 6 mins difference + 3 marks for proper illustration.
	 Trail (edges can not be repeated but nodes can) A > D -> E -> A -> B conditions specified modes can). A > D -> E -> A -> B conditions specified modes can). A > D -> E -> A -> B conditions specified modes can be repeated by B > A -> E -> D not edge or modes repeated what is passed through the network goes through the unique sequence of nodes and edges). 	

Part B

 $(2Q \times 5M = 10 \text{ Marks})$

	rartis	$(2Q \times 5M = 1$	U Marks)
Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	Degree is a node-level metric describing the number of nodes adjacent to each of the nodes (or the number of links each node has). In directed networks, one also distinguishes in-degree (number of incoming ties) and out-degree (number of outgoing ties). A self-loop (i.e. retweeting one's own tweet in a communication network) contributes +2 to the degree as it counts +1 for both out-degree and for +1 in-degree. Thus it captures data local to that particular node. Farness is a sum of geodesic distances from each node to all the other nodes in the network, so the metric shows how far each node is from all the others. Closeness is inverse of farness, so it captures how close the node is to all the others, thus making it a global measure. Naturally, Closeness measures global position of a node, whereas degree captures such position locally.	+ 3 for proper review.	8 mins
5	The centrality of a node should be defined by how well-connected the connections of that node are, as in case of citation network or 'Friend of a Friend concept', (have to explain a little). This is not taken into account by degree, betweenness		7 mins

Part

(2Q x 6M 12 Marks)

Q No			nc			ution	-				Scheme of Marking	Max. Time required for each Question
6	Given no	etwork ş	graph	From A A B B C C D E F F G	cted c	To C D E A F B D F G D G C	corres	pondin	ig F.dy	elist:	2 marks for correct edgelist + 4 marks for correct adjacency matrix	10 mins
	Correspo	onding a			trix.							
		NO	. \	В	C	D	E	F	G			
		` -	(;	- 0 -		! !		0	. ()	· :		
		B -		0	17	*:	. (1	,	1.		:	
		C	- 0		· ()	-	()		0	:		
		D	0	0	()	()	1	()	0	{	:	
		Ε	0	()		()					!	
		ŀ	[₍₎	0	٧.		(1	\$ 6.3			:	
		G	0	()	I	()	()	()	()			

	3 for each 12 min
Betweenness for node 2:	computation
 one geodesic from 1 to 4, and goes through 2 -> 1/1 	
 one geodesic from 1 to 3, and goes via 2 -> 1/1 	
• two paths from 1 to 5, and both through 2 -> 2/2	
• two paths from 4 to 3, but only one via 2 -> 1/2	;
Betweenness for node 2: sum(1/1+1/1+2/2+1/2)=3.5	
Betweenness for node 5:	:
Sum (0/1 (for path from 1 to 4) +0/1 (for path from 3 to 1) + 1/2 (for two paths from 3 to 4) + 0 (for all other paths that also do not go through node 5. and hence this fraction would equal to 0) = 0.5.	
nondo una naduan washa aquan to 0) = 0.5.	· · · · · · · · · · · · · · · · · · ·

Roll No.

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Date: 20.11.2019

Course Code: CSE 404

Time: 9.30 AM to 10.30 AM

Course Name: SOCIAL NETWORK ANALYSIS

Max Marks: 40

Program & Sem: B.Tech (CSE) & VII Sem

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(i) Question paper consists of 3 parts.

(ii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Question]

Answer all the Questions. Each question carries six marks.

(3Qx4M=12M)

1. Explain Cliques with relevant example.

2. Explain k-clique and k-club reachability in a network graph.

(C.O.NO.2)[Comprehension] (C.O.NO.2)[Comprehension]

3. Explain the concept of Affiliation networks.

(C.O.NO.2)[Comprehension]

Part B [Thought Provoking Question]

Answer both the Questions. Each question carries five marks.

(2Qx6M=12M)

4. Explain the method of finding maximum clique in a given network with relevant example.

(C.O.NO.2)[Comprehension]

5. Discuss the Edge Betweenness and vertex similarity, name 2 similarity measure.

(C.O.NO.2)[Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each question carries six marks.

(2Qx6M=12M)

6. Apply the Clique Percolation Method (CPM) algorithm to detect at least two communities from within the following network. Assume the input parameter k = 3. (C.O.NO.2)[Application]

7. Write the homophily test algorithm. Apply the Homophily Test algorithm to check for any evidence of homophily in the following heterogeneous network graph.

(C.O.NO.2)[Application]

SCHOOL OF ENGINEERING

TEST - II

Semester: VII

Date: 20-11-2019

Course Code: CSE 404

Time: 9:30 to 10:30 AM

Course Name: Social Network Analytics

Max Marks: 40

Program & Sem: B.Tech & VII

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels		prov [Mai		type otted]	Problem Solving type [Marks allotted]		Total Marks		
			K	С	Α	K	С	А	K	С	Α	
1	CO2	Module 2	-	04	-							4
2	CO2	Module 2	-	04	-							4
3	CO2	Module 3	-	04	_							4
4	CO2	Module 2				-	06	ome				6
5	CO2	Module 3				-	06	om:				6
6	CO2	Module 2							-		08	8
7	CO2	Module 3							-	-	08	8
	Total Marks			12			12				16	40

I hereby certify that all the questions are set as per the above guidelines. [MR .SATHISHI KUMAR]

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: VII

Course Code: CSE 297

Course Name: Social Network Analytics

Program & Sem: B.Tech & VII

Date: 20-11-2019

Time: 9:30 to 10:30 AM

Max Marks: 40

Weightage: 20%

Part A

 $(3Q \times 4M = 12 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	 Clique: a maximum complete subgraph in which all nodes are adjacent to each other Nodes 5, 6, 7 and 8 form a clique NP-hard to find the maximum clique in a network Straightforward implementation to find cliques is very 	Definition=1 Graph =2 Solution=1	6 min
	expensive in time complexity		

2	 Reachability: k-clique, k-club Any node in a group should be reachable in k hops k-clique: a maximal subgraph in which the largest geodesic distance between any two nodes <= k k-club: a substructure of diameter <= k Cliques: {1, 2, 3} Cliques: {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6} 2-clubs: {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5, 6} Commonly used in traditional SNA Often involves combinatorial optimization 	Describing =1 Graph =1 Solution=2	6 min
3	Affiliation Networks: a.k.a. two-mode network Affiliation networks are examples of a class of graphs called bipartite graphs Namely, nodes can be divided into two sets in such a way that every edge connects a node in one set to a node in the other set. (In other words, there are no edges joining a pair of nodes that belong to the same set all edges go between the two sets.) Affiliation networks represents the participation of a set of people in a set of toci	Definition=2 Example=2	6 min

Part B

 $(2Q \times 6M = 12 \text{ Marks})$

Q		Scheme of	Max.
No	Solution	Marking	Time
110			required
			for each
			Question

Vertex Similarity

- Jaccard Similarity $Jaccard(v_i,v_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}$
- Cosine similarity $Cosine(v_i, v_j) = \frac{(N_i \cap N_j)}{\sqrt{|N_i| + |N_j|}}$

Part C

 $(2Q \times 8M = 16 \text{ Marks})$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
6	CPM Example	Algorithm =4 Example=4	12 min
	9 8 6 Cliques of size 3: {1, 2, 3}, {1, 3, 4}, {4, 5, 6}, {5, 6, 7}, {5, 6, 8}, {5, 7, 8}, {6, 7, 8}		
	Communities: $\{1, 2, 3, 4\}$ $\{4, 5, 6, 7, 8\}$ $\{5, 6, 8\}$ $\{5, 7, 8\}$,

7	raction of heterogeneous significantly less than 2 <i>pq</i> or homophily	Algorithm=4 Test=4	12 min
	Cross-gender edges: 5 of 18 $p = 6/9 = 2/3$ $q = 3/9 = 1/3$ If no homophily, # of cross-gender edges should be 2pq = 4/9 = 8 out of 18 ∴ Evidence of homophily		

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

Course Code: CSE 404

Course Name: SOCIAL NETWORK ANALYSIS

Program & Sem: (CSE/ECE/EEE) & VII (OE-II)

Date: 30 December 2019

Time: 9:30 AM to 12:30 PM

Max Marks: 80

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly

(i) Question paper consists of 3 parts.

(ii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 3 marks.

(5Qx3M=15M)

1. Define 'degree' of a node in a network graph with proper example. (C.O.No.1) [Knowledge]

2. State the differences between walks, trails and paths in a network graph.

(C.O.No.1) [Knowledge]

3. Describe the concept of Affiliation networks.

(C.O.No.2) [Knowledge]

4. State the differences between Content based recommendation and Collaborative filtering with relevant examples. (C.O.No.3) [Knowledge]

5. List the challenges of recommender systems. .

(C.O.No.3) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each Question carries 5 marks.

(7Qx5M=35M)

- 6. Explain the concept of Eigenvector centrality of a node in a network graph. Describe the steps to compute the same. (C.O.No.1) [Comprehension]
- 7. Discuss Cosine and Jaccard similarity measures with relevant example.

(C.O.No.2) [Comprehension]

8. Explain the method of finding maximum clique in a given network with relevant example.

(C.O.No.2) [Comprehension]

9 Discuss the Schelling model of segregation with proper illustrations. State its utility.

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

13. Apply the Clique Percolation Method (CPM) algorithm to detect at least two communities from within the following network. Assume the input parameter k = 3.

(C.O.No.2) [Application]

14. Compute PageRank for pages A, B and C in the following network. Assume Initial rank of each page to be 1 and damping factor d = 0.85. (C.O.No.3) [Application]

15. Let us consider the following dataset as ratings of 3 Books B1, B2, B3 by 4 readers R1, R2, R3, R4. Using the collaborative filtering algorithm

Book No Readers Books rating

241	R1	B1	3
222	R1	В3	2
276	R2	B1	5
273	R2	B2	3
200	R3	B1	2
229	R3	B2	3
231	R3	В3	1
239	R4	B2	3

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO (% age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels		Problem Solving type [Marks allotted]	Total Marks
1	CO1	Module 1	03			03
2	CO1	Module 1	03			03
3	CO2	Module 3	03			03
4	CO3	Module 4	03			03
5	CO3	Module 4	03	**************************************		03
6	CO1	Module1		05		05
7	CO2	Module 2		05		05
8	CO2	Module 2		05		05
9	CO2	Module 3		05		05
10	CO2	Module 3		05		05
11	CO3	Module 4		05		05
12	CO3	Module 4		05		05
13	CO2	Module 2			10	10
14	CO3	Module 4			10	10
15	CO3	Module 4			10	10
	Total Ma	ırks	15	35	30	80

i nereby certify that all the questions are set as per the above guidelines
Faculty Signature:
Reviewer Commend:

REACH GREATER HEIGHTS

Semester:

Odd Sem. 2019-20

Course Code:

CSE 404

Course Name: SOCIAL NETWORK ANALYTICS

Program & Sem: B-TECH & VII

Date: 30.12.2019

Time:

3 HRS

Max Marks: 80

Weightage: 40%

Part A

 $(5Q \times 3M = 15Marks)$

Q No	Se	olution	Scheme of Marking	Max. Time required for each Question
1	Degree (Un Directed	Graphs)		
	Number of edges incident on a node		1.5 for undirected graph	5 Mins
	The degree of 5 is 3	1 (1)	+ 1.5 for undirected graph	
	Degree (Directed	Graphs)		
	In degree: Number of edges entering			
	Out-degree: Number of edges leaving			
	Degree - indeg + outdeg	ouldeg(1) : 2 		
	0	outdeg(2) = 4 indeg(2) = 2		
	5 4	outdeg(3)=3 indeg(3)-4		

		Walk (nodes and edges can be repeated): B -> A -> D -> A (what is passed through the network goes through the same node A twice, and through edge 3 twice) Trail (edges can not be repeated but nodes can): A -> D -> E -> A -> B (what is passed through the network does not use the same edge twice, but passes through node A twice) Path (no edges/nodes can be repeated): B -> A -> E -> D (no edge or node is repeated, what is passed through the network goes through the unique sequence of nodes and edges)		
And the state of t	3	Affiliation Networks: a.k.a. two-mode network	1.5 for definition + 1.5 for example	5 Mins
		Affiliation networks are examples of a class of graphs called bipartite graphs. Namely, nodes can be divided into two sets in such a way that every edge connects a node in one set to a node in the other set. (In other words, there are no edges joining a pair of nodes that belong to the same set; all edges go between the two sets.) Affiliation networks represents the participation of a set of people in a set of foci.		
	4	Assumption: a user's interest should match the description of the items that the user should be recommended by the system. - The more similar the item's description to that of the user's interest, the more likely that the user finds the item's recommendation interesting.	1.5 for Content Based Filtering	5 Mins
		Goal: find the similarity between the user and all of the existing items is the core of this type of recommender systems Content-based Recommendation Algorithm	+ 1.5 for Collaborative Filtering	
	:	Describe the items to be recommended		
		Create a profile of the user that describes the types of items the user likes		
		3. Compare items with the user profile to determine what to recommend		

Items Recommended

Collaborative Filtering

- Match people with similar interests as a basis for recommendation.
 - 1) Many people must participate to make it likely that a person with similar interests will be found.
 - 2) There must be a simple way for people to express their interests.
 - 3) There must be an efficient algorithm to match people with similar interests.

Example of CF MxN Matrix with M users and N items (An empty cell is an unrated item)

Items / Users	Data Mining	Search Engines		XML
Alex	1		5	4
George	2	3	4	
Mark	4	5		2
Peter			4	5

Challenges of Recommender System

- The Cold Start Problem
 - Recommender systems use historical data or information provided by the user to recommend items, products, etc.
 - When user join sites, they still haven't bought any product, or they have no history.
 - It is hard to infer what they are going to like when they start on a site.
- Data Sparsity

3 marks for
writing five
challenges

5 Mins

explanation on wity these terms are recommende

Part B

(7Q x 5M = 35 Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
6	Problem: what if the node has high degree but all of its connections are not well-connected to the rest of the network. Shouldn't centrality be defined by how well-connected your connections are? Eigenvector centrality = A node is central to the extent that the node is connected to others who are central. Eigenvector centrality measure is based on walks. • Starts by assigning centrality score of 1 to all nodes (vi = 1 for all i) • Recomputes scores of each node as weighted sum of centralities of all nodes in a node's neighborhood: vi = xijvj • Normalizes v by dividing each value by the largest value • Repeat steps 2 and 3 until values of v stop changing.	2.5 for definition + 2.5 for algorithm	13 Mins
7	• Jaccard Similarity $Jaccard(v_i,v_j)=\frac{ N_i\cap N_j }{ N_i\cup N_j }$ • Cosine similarity $Cosine(v_i,v_j)=\frac{ N_i\cap N_j }{ N_i N_j }$ • Jaccard $(1,6)=\frac{ \{5\} }{ \{1,3,4,5,6,7,8\} }=\frac{1}{7}$ $cosine(1,6)=\frac{1}{\sqrt{4\cdot 4}}=\frac{1}{4}$	2.5 for equation + 2.5 for example	13 Mins
8	Finding the Maximum Clique In a clique of size k, each node maintains degree >= k-1 Nodes with degree < k-1 will not be included in the maximum clique Recursively apply the following pruning procedure Sample a sub-network from the given network, and find a clique in the sub-network. Suppose the clique above is size k, in order to find out a larger clique, all nodes with degree <= k-1 should be removed. Repeat until the network is small enough Many nodes will be pruned as social media networks follow a power law distribution for node degrees	2.5 for definition + 2.5 for example	15 Mins

10	people of the same sort or with the same tastes and interests will be found		
10	together.	2.5 for	
	 Your friends are more similar to you in age, 	definition+	
	race, interests, opinions, etc. than a random	2.5 for	13 Mir
	collection of individuals	example	''
	 Homophily: principle that we tend to be similar to our friends 	champie	
	Homophily Test: If the fraction of heterogeneous (cross-gender)		
	edges is significantly less than $2pq$ then there is evidence for homophily		
	Cross-gender edges:		
	5 of 18		
	p = 6/9 = 2/3		
	q = 3/9 = 1/3		
	If no homophily, # of		
	cross-gender edges		
	should be 2pg = 4/9 =		
	8 out of 18		
	∴ Evidence of		
	homophily		
11	With the rapid growth of WWW most of the users use information retrieval tools like search engines to find		
	information from the web.	3 for	
	Zww Z	architecture	
		+	12 Mir
	Web Crawles Query Interface	2 for	
	Indexer Wab Mining	illustration	
	Index Query Processor		
	There are tens and hundreds of search engines available but some are popular like Google, Yahoo, Bing etc., because of their crawling and ranking methodologies.		
	The search engines download, index and store hundreds of millions of web pages. They answer tens of millions of queries every day. So Web mining and ranking mechanism becomes very important for effective information retrieval.		
	Before presenting the pages to the user, a ranking mechanism is done by the search engines to present the most relevant pages at the top and less relevant ones at the bottom.		
12	HITS		
		2.5 for hubs	
	Hyperlink Induced Topic Search(HITS) Algorithm [13] ranks the web page by processing in links and out	+	14 Mir
	links of the web pages. In this algorithm a web page is named as authority if the web page is pointed by	2.5 for	
	many hyperlinks and a web page is names as HUB if the page points to various hyperlinks. Authorities	authorities	
	 and hubs are illustrated in Figure Hubs and authorities are assigned respective scores. Scores are computed in a mutually reinforcing way; 		
	an authority pointed to by several highly scored hubs should be a strong authority while a hub that		
İ	points to several highly scored authorities should be a popular hub.		
	 Let ap and hp represent the authority and hub scores of page p, respectively, 8 (p) and I (p) denote the 		
	set of referrer and reference pages of page p, respectively. The scores of hubs and authorities are calculated as follows;		
	$ap = \sum_{q \in B(p)} hp$		
	Ze was		1

Part C

$(3Q \times 10M = 30Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
13	 CPM is such a method to find overlapping communities Input A parameter k, and a network Procedure Find out all cliques of size k in a given network Construct a clique graph. Two cliques are adjacent if they share k-1 nodes Each connected components in the clique graph form a community 9 10 Cliques for k=3: {1, 2, 3}, {1, 3, 4}, {2, 5, 6}, {5, 6, 7, 8}, {5, 6, 7, 8}, {5, 7, 9} K-clique Communities: {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {5, 6, 7} {5, 6, 8} {5, 6, 8} {5, 6, 8} {5, 6, 8} {5, 6, 8} {5, 6, 8} {5, 6, 8} {6, 6, 8} {6, 6, 8} {6, 6, 7, 8} {6, 6, 7, 8} {6, 6, 7, 8} {6, 6, 7, 8} {6, 6, 7, 8} {6, 6, 7, 8} {6, 6, 7, 8} {6, 6, 7, 8} {6, 6, 7, 8} {6, 6, 7, 8} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {5, 6, 7, 8, 9} {5, 6, 7, 8, 9} {5, 6, 7, 8, 9} {6, 6, 7, 8, 9} {6, 6, 7, 8, 9} {6, 6, 7, 8, 9} {6, 6, 7, 8, 9} {6, 6, 7, 8, 9} {7, 6, 6, 8} {1, 2, 3, 4} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {1, 2, 3, 4} {2, 5, 6, 7, 8, 9} {2, 5, 6, 7, 8, 9} {2, 5, 6, 7, 8, 9} {2, 5, 6, 7, 8, 9} {3, 4, 6, 6, 7, 8, 9} {4, 2, 3, 4	5 for Algorithm + 5 for Calculation	20 Mins
	(5,7,8) (1,3,4) (5,7,8) (6,7,8)		

	So	6 for Calculation	
	$PR(A) = 0.15 + 0.85 \times 1/2$		
	$PR(B) = 0.15 + 0.85 \times PR(A) + 1/2$		
	$PR(C) = 0.15 + 0.85 \times PR(B)$		
	By solving the above system of linear equations, we get		
	PR(A) = 0.575		
	PR(B) = 1.13		
	PR(C) = 3.11		
15	i) Dansa		
	B1B2B3	3 for Matrix	
	R1 3 ? 2	+	
	R2 5 3 ?	3 for Book-Book Similarity Matrix	20 Mins
	R3 2 3 1	+	
	R4 ? 3 2	4 for predicting ratings	
	ii)		
	B1 B2 B3		
	B1 1 1 0.99		
	B2 1 1 0.78		
	B3 0.99 0.78 1		
	iii)		
	B1 B2 B3		
	R1 3 2.56 2		
	R2 5 3 4.11		ı
	R3 2 3 1		
	R42.5 3 2		