|--|

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem. 2019-20

Date: 01.10.2019

Course Code: ECE 216

Time: 9:30AM to 10:30AM

Course Name: INFORMATION THEORY AND CODING

Max Marks: 40

Program & Sem: B.Tech (ECE) & VII.

Weightage: 20%

Instructions:

i. Question paper consists of 3 parts.

ii. Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries four marks.

(3Qx4M=12M)

1. A binary source is emitting an independent sequence of '0's and '1's with probabilities p and 1-p respectively. Tabulate the source entropy H(S) versus probabilities.

(C.O.NO.1) [Knowledge]

- 2. A discrete source emits one of six symbols once every milli-sec. The symbol probabilities are 1/2, 1/4, 1/8, 1/16, 1/32 and 1/32 respectively. Find the average information rate and also express H(S) in nats/symbol. (C.O.NO.1) [Comprehension]
- 3. State Shannon's first theorem. Define average length of the code?

(C.O.NO.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M)

- 4. A zero memory source has a source alphabet $S = \{s_1, s_2, s_3\}$ with $P = \{1/2, 1/4, 1/4\}$. Find the source entropy. Also determine the entropy of its 2^{nd} extension by listing all elements for 2^{nd} extension and verify that $H(S^2) = 2 H(S)$. (C.O.NO.1) [Application]
- 5. Apply Shannon's encoding algorithm to the set of messages {m₁, m₂, m₃, m₄, m₅} with their respective probabilities as {1/8, 1/16, 3/16, 1/4, 3/8}. Obtain the code table.

(C.O.NO.1) [Application]

Part C [Problem Solving Questions]

Answer the Questions. The Question carries twelve marks.

(1Qx12M=12M)

- 6. Consider the state diagram of the Markov source with a source S = {A, B, C, D} as shown in Fig. 1. (C.O.NO.1) [Application]
 - i. Compute the state probabilities using state equations.

[5M]

ii. Find the entropy of each state and source entropy.

[5M]

iii. Find the entropy of the adjoint source.

[2M]

SCHOOL OF ENGINEERING

GAIN MORE KNOWLEDGE REACH CREATER HEICHTS

Date: 01-10-2019

Time: 9.30 AM - 10.30 AM

Max Marks: 40

Weightage: 20%

Semester: VII

Course Code: ECE 216

Course Name: Information Theory and Coding

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels		recall type [Marks allotted] Bloom's Levels		recall type [Marks allotted] Bloom's Levels		_		oblem So type arks allo A	-	Total Marks
4	1	1/1/ Fundamentals of Coding Theory and Source Coding	4						-		4		
2	4-1	1/1/ Fundamentals of Coding Theory and Source Coding				4					4		
3	1	1/1/ Fundamentals of Coding Theory and Source Coding	4								4		
4	1	1/1/ Fundamentals of Coding Theory and Source Coding						8			8		
5	1	1/1/ Fundamentals of Coding Theory and Source Coding						8			8		
6	1	1/1/ Fundamentals of Coding Theory and Source Coding						12			12		
	Total Marks	`	8			4		28			40		

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Teign: / Necoled

I here certify that All the questions are set as per the above lines. Sivakumar]

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Date: 01-10-2019

Semester: VII **Time:** 9.30 AM – 10.30 AM

Course Code: ECE 216 Max Marks: 40

Course Name: Information Theory and Coding Weightage: 20%

Part A

 $(3Q \times 4 M = 12 Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
1	Entropy $H(S) = \sum_{i=1}^{2} pi \log \frac{1}{pi}$	1	6 mins
		+1	
	$= p \log \frac{1}{p} + (1-p) \log 1/(1-p)$	+2	
	The table 1 below shows tabulation of entropy values versus probabilities		
	Table 1: H(S) versus p		
and the same of th	p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		
	H(S) 0 0.469 0.722 0.881 0.97 1 0.97 0.881 0.722 0.469 0		
2	Entropy $H(S) = \sum_{i=1}^{2} pi \log \frac{1}{pi}$	2	6 mins
	$= 0.5 \log 2 + 0.25 \log 4 + 0.125 \log 8 + 0.0625 \log 16 +$	+1	
and description of the last of	(2) $0.03125 \log 32 = 1.9375 \text{ bits/message-symbol}$	+1	
	1 nat = 1.443 bits		
NATIONAL CONTRACTOR AND ADDRESS OF THE PROPERTY OF THE PROPERT	Hence 1 bit = 0.693 nats, so $H(S) = (1.9375)(0.693) = 1.34268$ nats/symbol		
-	Information rate $R_s = r_s H(S)$		
	Given $r_s = 1$ message symbol/m-sec = 10^3 message symbols/sec		
	Therefore Information rate $R_s = 1937.5$ bits/sec		
3	"Shannon's first theorem" or "Noiseless coding theorem " states that "given a	2+2	6 mins
	code alphabet with 'r' symbols and source alphabet of 'q' symbols, the average		
	length of code-words can be made as close to Hr(S) as possible by increasing		
	the extension".		
	The average length L of the code is computed as $L = \sum_{i=1}^{q} Pi \ li$		
	Pi refers to probabilities of source symbols and li refers to word lengths in		
	binary digits or binits		

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	Given $S = \{s_1, s_2, s_3\}$ with $P = \{1/2, 1/4, 1/4\}$.	2 + 2 + 2 + 2	10 mins
france september supplied and present september septembe	$H(S) = \sum_{i=1}^{3} pi \log \frac{1}{pi}$		
	H(S) = 1.5 bits/message-symbol The 2 nd extension of the basic source with 3 symbols will have $3^2 = 9$ symbols which can be listed along with their probability of occurrence as follows in Table 1: The entropy of the 2 nd extended source is $H(S^2) = \sum_{j=1}^{9} pj \log \frac{1}{pj}$ $= \frac{1}{4} \log 4 + 4(\frac{1}{8}) \log 8 + 4(\frac{1}{16}) \log 16$ $= 3 \text{ bits/m-symbol}$		
	$= 2 \times 1.5 \text{ bits/m-symbol}$ Therefore $H(S^2) = 2 H(S)$ (proved)		
	Table 1:		
	$\begin{array}{ c c c }\hline \textbf{Symbol} & \textbf{Probability} \\\hline \textbf{S}_1 \textbf{S}_1 & (1/2)(1/2) = 1/4 \\\hline \end{array}$		
	$s_1 s_2$ $(1/2)(1/4) = 1/8$		
	$s_1 s_3$ $(1/2)(1/4) = 1/8$		
r handele e e e e e e e e e e e e e e e e e e	$s_2 s_1$ $(1/4)(1/2) = 1/8$		
restlections o	$ s_2s_2 $ $(1/4)(1/4)=1/16$		
eritari di cari	$ \mathbf{s}_2 \mathbf{s}_3 (1/4)(1/2) = 1/16$		
200000000000000000000000000000000000000	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$ s_3s_2 $ $ (1/4)(1/4)=1/16$		
5	Shannon's encoding algorithm	2 + 2 + 2 + 2	11 mins
	Step 1: The symbols are arranged in order of decreasing		
**	probabilities as follows:		
	m ₅ m ₄ m ₃ m ₁ m ₂		
	6/16 4/16 3/16 2/16 1/16		
	p ₁ p ₂ p ₃ p ₄ p ₅		
	Step 2: The sequences of α 's are computed: $\alpha_1 = 0$; $\alpha_2 = 6/16 = 0.375$; $\alpha_3 = 6/16 + 4/16 = 0.625$; $\alpha_4 = 10/16 + 3/16 = 0.8125$; $\alpha_5 = 13/16 + 2/16 = 0.9375$ and $\alpha_6 = 15/16 + 1/16 = 1$ Step 3: The smallest integer value of li is found using $2^{1i \ge 1}/pi$, for all $i = 1, 2, 3, 4, 5$ For $i = 1, 2^{11 \ge 16}/6 = 2.66$ Smallest value of 11 is 2, therefore $11 = 2$ For $i = 2, 2^{12 \ge 4}$, smallest value of $12 = 2$ Similarly we get $13 = 3, 14 = 3$ and $15 = 4$ Step 4: The decimal numbers α_i are expanded in binary form upto 1_i places: $\alpha_1 = 0$; $\alpha_2 = (0.375)_{10} = (.011)_2$		

 $\alpha_3 = (0.625)_{10} = (.101)_2$ $\alpha_4 = (0.8125)_{10} = (.1101)_2$ $\alpha_5 = (0.9375)_{10} = (.1111)_2$ Step 5: $\alpha_1 = 0$ and l1 = 2, code for s1 is 00 $\alpha_2 = (.011)_2$ and 12 = 2, code for s2 is 01 $\alpha_3 = (.101)_2$ and 13 = 3, code for s3 is 101 $\alpha_4 = (.1101)_2$ and 14 = 3, code for s4 is 110 $\alpha_5 = (.1111)_2$ and 15 = 4, code for s5 is 1111 Symbols Code l1 in binits p_i 00 3/8 2 m_5 01 2 **M**4 1/4 3/16 101 3 m3 1/8 110 3 m_1 1/16 m_2 1111 4 Table 1: Code table for the problem

Part C

 $(1Q \times 12M = 12 Marks)$

			(
Q No		Solution	Scheme of Marking	Max. Time required for each Question
	(i)	From the state diagram, the state equations are	5+5+2	18 mins
6		6 P(A) + 0.5 P(D)(1)		
	1 ' '	4 P(A) + 0.5 P(D)(2)		
	1 '	6 P(C) + 0.5 P(B)(3)		
	, ,	4 P(C) + 0.5 P(B)(4)		
	From eqr	1.(1) P(A) = 1.25 P(D)(5)		
		a.(2) P(B) = P(D)(6)		
	From eqr	1.(3) P(C) = 1.25 P(D)(7)		
	But P(A)	+ P(B) + P(C) + P(D) = 1(8)		
	Solving v	we get, $P(D) = P(B) = 2/9$; $P(A) = P(C) = 5/18$;		
	(ii)	Entropy of each state is		
		$H_{i=\sum_{i=1}^{n} Pij \log 1/pij}$		
		$H_A = 0.971$ bits/state		
		Similarly $H_B = 1$ bits/state		
		$H_C = 0.971$ bits/state and $H_D = 1$ bits/state		
	(iii)	The entropy of the source is $H(S) = \sum_{i=1}^{n} Pi Hi$		
		$H(S) = P(A) H_A + P(B) H_B + P(C) H_C + P(D)H_D$		
		H(S) = 0.9839 bits/binary digits	a de la composition della comp	
		Adjoint source is $H(S') = \sum_{i=1}^{4} P(mi) \log 1/p(mi)$	Yan da a a a a a a a a a a a a a a a a a	
	H(S') = (2) 5/18 log 18/5 + (2) 2/9 log 9/2 bit/m-symbol		
		Therefore $H(S') > H(S)$		

Roll No.	
----------	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST -2

Sem & AY: Odd Sem 2019-20

Course Code: ECE 216

Course Name: INFORMATION THEORY AND CODING

Program & Sem: B.Tech (ECE) & VII

Date: 19.11.2019

Time: 9.30 AM to 10.30 AM

Max Marks: 40

Weightage: 20%

Instructions:

(i) Read the question properly and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries four marks.

(3Qx4M=12M)

- 1. Devise an Instantaneous binary code in two ways for a source producing 5 symbols namely \$1 to \$5. [4] (C.O.2) [Knowledge]
- 2. Assuming the received sequence (in the absence of noise) at the receiver as 001100, Check whether the codes given in Table-1 are uniquely decodable and instantaneous?

 Table-1

 [4] (C.O.2) [Analysis]

Source Symbols	Code-A	Code-B
S1	0	0
S2	10	01
S3	110	011
S4	1110	0111

3. Define Mutual Information? How mutual information is related to joint entropy of the channel? [4] (C.O.2) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each Question carries eight marks. (2Qx8M=16M)

- 4. Consider a source of 8 alphabets A to H with corresponding probabilities as P= {0.22, 0.20, 0.18, 0.15, 0.10, 0.08, 0.05, 0.02} respectively. Compute the Huffman code for this source, moving the composite symbol "as low as possible". Determine the code efficiency and compute the variance of the word-lengths. List any two merits of Huffman coding over Shannon-Fano coding.

 [8] (C.O.2) [Analysis]
- 5. (i) State and prove Kraft Inequality relation.

[5] (C.O.2) [Analysis]

(ii) Consider a binary block code with 2ⁿ code words of same length n. Verify that Kraft Inequality is satisfied for such a code. [3] (C.O.2) [Analysis]

Part C [Problem Solving Questions]

Answer the Question. The Question carry twelve marks.

(1Qx12M=12M)

6. A discrete memory less source has an alphabet of 7 symbols as described below: Source $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$ with its corresponding probabilities as $\{0.25, 0.25, 0.125, 0.125, 0.125, 0.0625, 0.0625\}$ respectively. Compute Shannon-Fano code for this source and find the coding efficiency. Draw the code-tree. Justify why the computed source code has an efficiency of 100%? Also illustrate the properties of Joint Probability Matrix in a discrete communication channel? [12] (C.O.2) [Analysis]

SCHOOL OF ENGINEERING

Semester: VII

Course Code: ECE 216

Course Name: Information Theory and Coding

Date: 19-11-2019

Time: 9.30 AM - 10.30 AM

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO	Unit/Module Number/Unit	red	lemo call ty [Mar	ype			ght g type llotted]								
			E	allotted] Bloom's Levels		allotted] Bloom's		allotted] Bloom's				Levels		blem S type arks all	•	Total Marks
				K	•		С			Α	- A					
1	2	2/2/ Channel Coding	4									4				
2	2	2/2/ Channel Coding				4						4				
3	2	2/2/ Channel Coding	4									4				
4	2	2/2/ Channel Coding							8			8				
5	2	2/2/ Channel Coding							8			8				
6	2	2/2/ Channel Coding	4						8			12				
	Total Marks		12			4			24			40				

K = Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt

Levieur Comments

In scheme of Masking, The mask is just shown in splitted form.

Which mark has to be given for what step is not clearly shown.

Dupin

It. In Thought provoking question, 4 is like problem

5. Normal Theorem (State and prove).

Thought provoking question is it should.

Thought provoking question is it should.

Provoke the thought, instead of giving provoke the thought or state & prove type of normal problem or state & prove type of

Questions.

Jonfor

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: VII

Date: 19-11-2019

Time: 9.30 AM - 10.30 AM

Course Code: ECE 216

Max Marks: 40

Course Name: Information Theory and Coding

Weightage: 20%

Part A

 $(3Q \times 4 M = 12 Marks)$

Q No		Solution		Scheme of Marking	Max. Time required for each Question
1	Start assigning S1	→0. Hence a	ll other code-words	1	6 mins
	should start with '	1' according	to prefix property.	+1	
	Let us	assign for S	2 → 10.	+ 2	
	Let us assign for S	$3 \rightarrow 110$. (we	cannot assign '11'		
	for S3, as no other	combination	ns left for S4 & S5)		
	Let us assign for	: S4 → 1110 a	and for S5 \rightarrow 1111		
	Code Table-1 of 2 ty	pes of instanta	neous codes		
	Source Symbols	Code-A	Code-B		
	S1	0	00		
	S2	10	01		
	S3	110	10		
	S4	1110	110		
	S5	1111	111		
2	Given the received	sequence as	001100.	2 + 2	6 mins
	If Code-A is used, i	t is decoded	as S1 S1S3 S1.		
	If Code-B is used, i	t is decoded	as S1 S3 S1 S1.		
	Both Code-A and	Code-B are	uniquely		
	decodable.				
	Code-A can be deco	oded without	t referring to the		
	succeeding symbols	s. So Code- A	A is an		
	instantaneous code	e.			
	When Code-B is us	ed for decod	ing, at every stage		
	we have to wait for	the succeedi	ing symbols to		

	arrive and hence Code-B is not an instantaneous code.		
3	When an average information of $H(A)$ is transmitted over the channel, an average amount of information equal to equivocation $H(A/B)$ is lost in the channel due to inter-symbol conversion (due to noise). The balance of information received at the receiver w.r.to an observed output symbol is the mutual information denoted as $I(A, B)$. $I(A, B) = H(A) - H(A/B)$. The mutual information is related to joint entropy of the channel by $I(A, B) = H(A) + H(B) - H(A,B)$. (Venn diagram) Where $H(A,B)$ is the joint entropy.	2+1+1	6 mins

Part B

 $(2Q \times 8M = 16 \text{ Marks})$

		(- (,
Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	Huffman Coding	2 + 2 + 2 + 2	10 mins
4	Given S 'with $P = \{0.22, 0.20, 0.18, 0.15, 0.10, 0.08, 0.15, 0.15, 0.10, 0.15, 0.1$	2 + 2 + 2 + 2	10 1111115
	0.05, 0.02}.		
	Average length $L = \sum_{i=1}^{8} pi \ li = (0.22) \ 2 + (0.20) \ 2$		
	+(0.18) 3+(0.15) 3+(0.10) 3+(0.08) 4 +(0.05) 5+(0.02) 5		
	L = 2.8 binits/m-symbol		
	$\frac{3}{2}$ 1		
	$H(S) = \sum_{i=1}^{S} pi \log \frac{1}{pi}$		
	· · · · · · · · · · · · · · · · · · ·		
	$= 0.22 \log \frac{1}{0.22} + 0.20 \log \frac{1}{0.20} + 0.18 \log \frac{1}{0.18} +$		
	$0.15 \log \frac{1}{0.15} + 0.10 \log \frac{1}{0.10} + 0.08 \log \frac{1}{0.08} +$		
	0.15		
	$0.05 \log \frac{1}{0.05} + 0.02 \log \frac{1}{0.02}$		
	H(S) = 2.7535 bits/message-symbol		
	Source efficiency = $\frac{H(S)}{I} = \frac{2.7535}{2.8} = 98.34 \%$		
	Variance placing the composite symbol "as low as		
	possible"		
	Var $(li) = E[(li - L)^2] = \sum_{i=1}^{8} pi (li - L)^2$		
	$ \begin{vmatrix} var(tt) - E_1(tt - E) & j - Z_{i=1}pt & (tt - E) \\ = (0.22) & (2 - 2.8)^2 + (0.20) & (2 - 2.8)^2 + (0.18) \end{vmatrix} $		
	$(3-2.8)^2 + (0.15)(3-2.8)^2 + (0.10)(3-2.8)^2 +$		
	$(0.08) (4 - 2.8)^2 + (0.05) (5 - 2.8)^2 + (0.02) (4 - 2.8)^2$		
	$(2.8)^2$		
	Merits of Huffman coding:		
	1. Minimum redundancy code compared to		
	shannon-fano codes.		
	2. Average length is low and small variance		

	It is an optimal code but shannon-fano codes are sub-optimal.		
5	Kraft Inequality Statement: A necessary and sufficient condition for the existence of an instantaneous code with word lengths l_1, l_2, \ldots, l_q is that $\sum_{i=1}^q r^{-li} \le 1$ Where 'q' is no source symbols, 'r' no of different symbols in code alphabet X and l_i is the word length in binary digits in the code-word corresponding to i th source symbol. Proof: The word lengths l_1, l_2, \ldots, l_q are arranged in ascending order so that $l_1 \le l_2 \le \ldots \le l_q$ Let n_i represent the no. of messages encoded into codewords of length 'i'. For $i=1$, $n_1 \le r$ For $i=2$, for getting an instantaneous code, we must start encoding using $(r-n_1)$ symbols only as the 1^{st} digit and the 2^{nd} digit can be any of 'r' symbols of the code alphabet. Therefore for $i=2$, $n_2 \le (r-n_1)r$ (or) $n_2 \le r^2 - n_1 r$ Similarly for $i=3$, $n_3 \le [(r^2-n_1r)-n_2]r$ Or $n_3 \le r^3 - n_1r^2 - n_2 r$. Proceeding this way, we can arrive at $n_i \le r^i - n_1r^{(i-1)} - n_2r^{(i-2)} - \cdots - n_{(i-1)}r$ Multiplying throughout by r^{-i} , we get $n_i r^{-i} + n_{(i-1)}r^{-(i-1)} + n_{(i-2)}r^{-(i-2)} + \cdots + n_1r^{-1} \le 1$ Or $\sum_{m=1}^i n_m r^{-m} \le 1$	2 + 2+2+2	11 mins
	Since the actual no. of messages n_i has to be an integer $\sum_{m=1}^i n_m \ r^{-m} = \sum_{j=1}^{n_1} \ r^{-1} + \sum_{j=1}^{n_2} \ r^{-2} + \ldots + \sum_{j=1}^{n_i} \ r^{-i} \le 1$ Combining all the groups (since $n_1 + n_2 + \ldots + n_i = q$), we can write that $\sum_{i=1}^q r^{-li} \le 1$ (proved) (ii) Since all the code words of same length n , we have $l_i = n$ and the no of source symbols is $q = 2^n$ with $r = 2$ for binary codes. $\sum_{i=1}^q r^{-li} = \sum_{i=1}^q 2^{-n}$ $= 2^{-n} + 2^{-n} + \ldots + 2^{-n} (\text{occurs } 2^n \text{ terms}) = [2^{-n}][2^n]$		

, Source Syl	nbols	Code-A				
S1		0				
S2		00				
S3		01				
S4		10			!	
S5		11				
= 9 symbols		eous codes (for	n=3)			
		Symbols S6	Code-A			
= 9 symbols Symbols	Code-A	Symbols	Code-A			
Symbols S1	Code-A	Symbols S6	Code-A			
= 9 symbols Symbols S1 S2	Code-A 000 001	Symbols S6 S7	101 110			
Symbols Symbols S1 S2 S3	Code-A 000 001 010	Symbols S6 S7	101 110			

Part C

 $(1Q \times 12M = 12 \text{ Marks})$

						` `	•
Q						Scheme of	Max. Time require
N			S	Solution		Marking	Question
o							
						6+2+4	18 mins
6	Shannon Fa	no coding	<u> </u>				
	Code table	<u>-1</u>					
	Symbols	Code	li	Pi	Verify $log \frac{1}{pi} = li$		1
	S1	11	2	0.25	2 = l1		
	S2	10	2	0.25	2 = l2		
	S3	011	3	0.125	3 = <i>l</i> 3		
	S4	010	3	0.125	3 = l4		

S5	001	3	0.125	3 = l5
S6	0001	4	0.0625	4 = <i>l</i> 6
S7	0000	4	0.0625	4 = l7

Average length
$$L = \sum_{i=1}^{8} pi \ li$$

= 2 (0.25) (2) + 3(0.125) (3)+ 2 (0.0625) 4
 $L = 2.625 \text{ binits/m-symbol}$

$$H(S) = \sum_{i=1}^{3} pi \log \frac{1}{pi}$$

$$= \left[0.25 \log \frac{1}{0.25}\right](2) + \left[0.125 \log \frac{1}{0.125}\right](3) + \left[0.0625 \log \frac{1}{0.0625}\right](2) = 2.625 \frac{bits}{m} symbol$$

coding efficiency =
$$\frac{H(S)}{L} = \frac{2.625}{2.625} = 100 \%$$

The reason for the coding efficiency to be 100 % is as follows:

If
$$li = log \frac{1}{pi}$$
 for all $i =$

1,2,..7 then efficiency becomes 100%

We observe that from coding table calculation, li =

 $log \frac{1}{pi}$ for all i = 1,2,...7, hence the coding efficiency is 100%.

Joint Probability Matrix (JPM) in a discrete communication channel:

"The sum of all the elements in any row of the channel matrix is equal to unity".

JPM Property-1:

"By adding the elements of JPM column wise, we can obtain the probability of output symbols"

JPM Property-2:

"By adding the elements of JPM row wise, we can obtain the probability of input symbols"

JPM Property-3:

"The sum of all the elements of JPM is equal to unity".

Roll No						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

Date: 27 December 2019

Course Code: ECE 216

Time: 9:30 AM to 12:30 PM

Course Name: INFORMATION THEORY AND CODING

Max Marks: 80

Program & Sem: B.Tech (ECE) & VII

Weightage: 40%

Instructions:

(i) Read the question properly and answer accordingly. Question paper consists of 3 parts.

(ii) Scientific and Non-programmable calculators are permitted.

(iii) Exchange of calculators is not allowed.

Part A [Memory Recall Questions]

Answer all the sub Questions. Each sub Question carries 2 marks.

(10Qx2M=20M)

1.

- a. Define entropy. State the maximum value of entropy when all the source symbols become "equi-probable". (C.O.No.1) [Knowledge]
- b. State Shannon's first theorem.

(C.O.No.1) [Knowledge]

- c. When will a non-singular code is said to be "uniquely decodable"? Give one example to illustrate such codes. (C.O.No.2) [Knowledge]
- d. When will an Instantaneous code is said to be an "optimal code"? Give one suitable example.

(C.O.No.2) [Knowledge]

- e. How mutual information is related to joint entropy of the channel? Is mutual information is symmetric? (C.O.No.2) [Knowledge]
- f. Justify with reasons why error control coding is important?

(C.O.No.3) [Knowledge]

- g. A Gaussian channel has a 10 MHz bandwidth. If SNR is 100, calculate the channel capacity and the maximum information rate. (C.O.No.3) [Knowledge]
- h. Find the error detecting and error correcting capabilities of (6, 3) code, given the minimum distance d_{min} =3? (C.O.No.4) [Knowledge]
- i. When a (n,k) linear block code is said to be cyclic code? Give an example.

(C.O.No.4) [Knowledge]

j. How are convolutional codes different from block codes?

(C.O.No.4) [Knowledge]

8. Consider a zero-memory source with S= {s₁, s₂, s₃, s₄, s₅, s₆, s₇} whose corresponding probabilities P= {0.4, 0.2, 0.1, 0.1, 0.0, 0.05} respectively. Construct a binary Huffman code by (i) placing the composite symbol as low as possible (ii) by moving the composite symbol as high as possible. Compute the variances of the word-lengths in both the cases, find the coding efficiency and also redundancy. Comment on the result.

(C.O.No.2) [Analysis]

9. For a systematic (6,3) linear block code, the parity matrix P is given by

$$[P] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- (i) Find all possible code-vectors and construct the corresponding encoding circuit. [6M]
- (ii) If the received code-vector $R = [r_1 \ r_2 \ r_3 \ r_4 \ r_5 \ r_6]$, then construct the corresponding syndrome calculation circuit? [4M] (C.O.No.4) [Analysis]

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO (% age of CO)	Unit/Module Number/Unit /Module Title	Memory recall type [Marks allotted] Bloom's Levels	Thought provoking type [Marks allotted] Bloom's Levels	Problem Solving type [Marks allotted]	Total Marks
PART A Q.NO.1	C.O.NO 1	MODULE 1 Fundamentals of Coding Theory and Source Coding	2			2
PART A Q.NO.2	C.O.NO 1	MODULE 1 Fundamentals of Coding Theory and Source Coding	2			2
PART A Q.NO.3	C.O.NO 2	MODULE 2 Channel Coding	2			2
PART A Q.NO.4	C.O.NO 2	MODULE 2 Channel Coding	2			2
PART A Q.NO.5	C.O.NO 2	MODULE 2 Channel Coding	2			2
PART A Q.NO.6	C.O.NO 3	MODULE 3 Error control Coding	2			2
PART A Q.NO.7	C.O.NO 3	MODULE 3 Error control Coding	2			2

Q.NO.17		Channel Coding				
PART C Q.NO.18	C.O.NO 4	MODULE 4 Block codes and convolutional codes			10	10
	Total Marks	}	20	30	30	80

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Sign Needed.

Reviewer Commend: -> Part B - Thought Browning

Format of Answer Scheme

6	Error control coding is nothing but calculated use of redundancy. Error control coding is important because (i) It improves the data quality to a great extent. (ii) Great advantage is the reduction in (Eb/N) for a fixed BER, which in turn reduces the transmitted power and hence the hardware costs.	2 marks for 2 merits	2 mins
7	C= B log (1+S/N) = 66.59 X 10 $^{\circ}$ bits/sec Rmax =C ∞ =(S/N) B log e maximum information rate = 1.44 x 10 $^{\circ}$ bits/sec	1 mark for sampling rate+ 1 mark for information rate	4 mins
8	minimum distance $d_{min} = 3$ error detecting capability = $d_{min} - 1 = 2$ (double errors) error correcting capability of (6,3) code =[$(d_{min}-1)/2$] = 1 only single errors can be corrected	1 mark for definition + 1 mark for error correction	2 mins
9	A (n,k) linear block code is said to be cyclic code if every cyclic shifts of the code is also a code-vector of C. Let C1=110110 be a code-vector of C. If C2 =011011 (the last bit of C1 has moved into the 1 st position) is also a code-vector of C, then it is called a "cyclic code".	1 mark for definition + 1 mark for example	2 mins
10	In "convolutional codes", a block of 'n' code digits generated by encoder depends not only on the 'k' message digits, but also on the preceding (m-1) blocks of message digits. (Presence of memory). In "Block codes", a block of 'n' code digits generated by encoder depends only on the 'k' message digits within that time unit. (Absence of memory). Block codes well suited for error detection and convolutional codes are preferred for error correction.	2 marks for 2 differences	2 mins

Part B

(5Q x 6M =30 Marks)

Q No				Scheme of Marking	Max. Time required for each Question			
11	Shan below Table	<u>v:</u>	encoding p	rocess is as	shown in	table (i)	3 for table + 3 for average length and efficiency	15 mins
	S1 S2	0.5 (1) 0.125 (0)	- 0.125 (1)	0.125 (1)	-			

13	Kraft Inequality Statement: A necessary and sufficient condition for the existence of an instantaneous code with word lengths I_1,I_2,\dots,I_q is that $\sum_{i=1}^q r^{-li} \le 1$ Where 'q' is no source symbols, 'r' no of different symbols in code alphabet X and I_i is the word length in binary digits in the code-word corresponding to i th source symbol. Proof: The word lengths I_1,I_2,\dots,I_q are arranged in ascending order so that $I_1 \le I_2 \le \dots \le I_q$ Let n_i represent the no. of messages encoded into code-words of length 'i'. For i=1, $n_1 \le r$ For i=2, for getting an instantaneous code, we must start encoding using $(r^- n_1)$ symbols only as the 1st digit and the 2^{nd} digit can be any of 'r' symbols of the code alphabet. Therefore for i=2, $n_2 \le (r-n1)r$ (or) $n_2 \le r^2 - n_1r$ Similarly for i=3, $n_3 \le [(r^2-n_1r)-n_2]r$ Or $n_3 \le r^3 - n_1 r^2 - n_2r$. Proceeding this way, we can arrive at $n_i \le r^i - n_1 r^{(i-1)} - n_2r^{(i-2)} - \dots - n_{(i-1)}r$ Multiplying throughout by r^{-i} , we get $n_i \ r^{-i} + n_{(i-1)} r^{-(i-1)} + n_{(i-2)} r^{-(i-2)} + \dots + n_1\ r^{-1} \le 1$ Or $\sum_{m=1}^i n_m \ r^{-m} \le 1$ Since the actual no. of messages $n_i \ has\ to\ be\ an\ integer$ Combining all the groups (since $n_1 + n_2 + \dots + n_i = q$), we can write	2 marks for statement + 4 marks for derivation	15 mins
14	Shannon-Hartley Law states that the capacity of a band-limited Gaussian channel with AWGN is given by C= B log (1+S/N) bits/sec First Implication: When B is increased, Channel capacity C also increases, since Rmax = C, the max.frate of information can be enhanced to as large value as possible. C does not become infinite when B is infinite. C ∞ is not becoming infinite even though B increases beyond "Shannon's limit" (-1.6 db), it becomes constant Second Implication The exchange of bandwidth with SNR and viceversa. A tradeoff exists between bandwidth-to-S/N can be illustrated by a trade-off curve. B/C = 1 / log (1+S/N) There is a 25% reduction in bandwidth for an approximate 60% increase in signal power.	2 + 2+ 2	15 mins
15	Generator matrix consists of [L] rows and $[n(L+m)]$ columns C= d G Given d = 1 0 1 1 1 $g^{(1)}$ = 1011 and $g^{(2)}$ = 1111 Generator matrix consists of [L] = 5 rows and $[n(L+m)]$ = 16 columns	2 marks for encoder diagram + 2 marks for G matrix + 2 marks for C matrix	15 mins

	Variance pl possible"	the efficiency = $\frac{H(S)}{L}$ acing the compose	ite symbol "as low			
	Code Table	$S[(li-L)^2] = \sum_{i=1}^{8}$ e arrived after Huhe composite symple becomes	ıffman Coding pı	ocess by		
	Symbols	Probabilities	Code Table			
	S1	Pi 0.4	00			
	S1 S2	0.2	11			
	S3	0.1	011			
	S4	0.1	100			
	S5	0.1	101			
	S6	0.05	0100			
	S7	0.05	0101			
	Variance pl	acing the compos	ite symbol "as hig	h as		
		$\Gamma[(li-L)^2] = \sum_{i=1}^8$	$pi (li - L)^2 = 0.45$			
	CONMENT	. December along the con-		Sa a Jailada		
4		: By placing the c ", the variance of v				
-		ich is desirable.	word lengths becc	11163		
18		r of (6.3) linear blo	ock code		3 marks for code	18 mins
	Check bits i	• ,			vector table+3 marks	
					for circuit + 4 marks	
	_	ectors = 8 namely			for syndrome error	
	, , , , , ,	(100),(101),(110)	and (111).			
	[C] = [D] {G					
	$[G] = [I_3 P]$	since k=3] = [d₁,d₂,d₃, (d₁+d	-) (d-±d-) (d.±d-)1			
		j – [u1,u2,u3, (u1+u ode vector table co		message		
	vectors.	ac vector table of	orresponding to e	message		
		dulo-2 adders use	ed =3			
	Á 3-bit shift	register and a 6 b	it commutator seg	gment are		
		ealize LBC encod				
	ii) Find Trar	nspose of Parity cl				
1	1					
	Parity checl					
	Now take T	ranspose of H and				
	Now take T [S] =[s ₁ s ₂ s	ranspose of H and ₃] =R H [⊤]	d multiply with R			
	Now take T [S] =[s ₁ s ₂ s	ranspose of H and ₃] =R H ^T = [r ₁ r ₂ r ₃ r ₄ r ₅ r	d multiply with R ₅] H [⊤]			
	Now take T [S] = $[s_1 \ s_2 \ s_3]$ S= $[s_1 \ s_2 \ s_3]$	ranspose of H and ₃] =R H ^T = [r ₁ r ₂ r ₃ r ₄ r ₅ r	d multiply with R $[F_{6}] H^{T}$ $[F_{3} + F_{5}], (F_{1} + F_{2} + F_{6})]$			
	Now take T [S] =[$s_1 s_2 s_3$] Syndrome k $s_2 = r_2 + r_3 +$	ranspose of H and $_3$] =R H ^T = [r_1 r_2 r_3 r_4 r_5 r_4 = [(r_1 + r_3 + r_4), (r_2 + pits are s_1 = r_1 + r_3 + r_5 and s_3 = r_1 + r_2 +	d multiply with R $[a_1] H^T$ $[a_3 + r_5), (r_1 + r_2 + r_6)]$ $[a_4]$			
	Now take T $[S] = [s_1 \ s_2 \ s]$ $S = [s_1 \ s_2 \ s_3]$ Syndrome k $s_2 = r_2 + r_3 + s$ syndrome c	ranspose of H and $_3$] =R H ^T = [r_1 r_2 r_3 r_4 r_5 r_4 = [($r_1+r_3+r_4$), (r_2+r_4), its are $r_1+r_3+r_4$ r_5 and r_5 and $r_7+r_2+r_4$ alculation circuit of	d multiply with R $[f_1] H^T$ $[f_3 + f_5], (r_1 + r_2 + f_6)]$ $[f_4]$ $[f_6]$ contains:			
	Now take T $[S] = [s_1 \ s_2 \ s]$ $S = [s_1 \ s_2 \ s_3]$ Syndrome k $s_2 = r_2 + r_3 + s$ syndrome of 6 bits of red	ranspose of H and a_3] =R H ^T = [r_1 r_2 r_3 r_4 r_5 r_4 = [($r_1+r_3+r_4$), (r_2+r_5) bits are $s_1 = r_1+r_3+r_5$ and $s_3 = r_1+r_2+r_5$ alculation circuit of the service of	d multiply with R $[f_1] H^T$ $[f_3 + f_5], (r_1 + r_2 + f_6)]$ $[f_4]$ $[f_6]$ contains:			
	Now take T [S] =[s_1 s_2 s_3] Syndrome k s_2 = r_2+r_3+ syndrome c 6 bits of rec 3 no. of mo	ranspose of H and r_3] =R H ^T = [r_1 r_2 r_3 r_4 r_5 r_4 = [($r_1+r_3+r_4$), ($r_2+r_3+r_4$), its are $s_1=r_1+r_2+r_3+r_4$ and $s_3=r_1+r_2+r_4$ alculation circuit derived vector in shedulo-2 adders	d multiply with R $[f_1] H^T$ $[r_3 + r_5), (r_1 + r_2 + r_6)]$ $[r_4]$ $[f_6]$ contains: ift register	ore.		
	Now take T [S] =[s_1 s_2 s_3] Syndrome k s_2 = r_2+r_3+ syndrome c 6 bits of rec 3 no. of mo	ranspose of H and a_3] =R H ^T = [r_1 r_2 r_3 r_4 r_5 r_4 = [($r_1+r_3+r_4$), (r_2+r_5) bits are $s_1 = r_1+r_3+r_5$ and $s_3 = r_1+r_2+r_5$ alculation circuit of the service of	d multiply with R $[f_1] H^T$ $[r_3 + r_5), (r_1 + r_2 + r_6)]$ $[r_4]$ $[f_6]$ contains: ift register	ers.		
	Now take T [S] =[s_1 s_2 s_3] Syndrome k s_2 = r_2+r_3+ syndrome c 6 bits of rec 3 no. of mo	ranspose of H and r_3] =R H ^T = [r_1 r_2 r_3 r_4 r_5 r_4 = [($r_1+r_3+r_4$), ($r_2+r_3+r_4$), its are $s_1=r_1+r_2+r_3+r_4$ and $s_3=r_1+r_2+r_4$ alculation circuit derived vector in shedulo-2 adders	d multiply with R $[f_1] H^T$ $[r_3 + r_5), (r_1 + r_2 + r_6)]$ $[r_4]$ $[f_6]$ contains: ift register	ers.		
	Now take T [S] =[s_1 s_2 s_3] Syndrome k s_2 = r_2+r_3+ syndrome c 6 bits of rec 3 no. of mo	ranspose of H and r_3] =R H ^T = [r_1 r_2 r_3 r_4 r_5 r_4 = [($r_1+r_3+r_4$), ($r_2+r_3+r_4$), its are $s_1=r_1+r_2+r_3+r_4$ and $s_3=r_1+r_2+r_4$ alculation circuit derived vector in shedulo-2 adders	d multiply with R $[f_1] H^T$ $[r_3 + r_5), (r_1 + r_2 + r_6)]$ $[r_4]$ $[f_6]$ contains: ift register	ers.		