

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOIS	Program: BCA (AIML)	
Course Code: CSA3071	Course Name: Deep Learning	
Semester: IV	Max Marks: 100	Weightage: 50%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	26	24	

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

$\label{lem:constraints} \textbf{Answer ALL the Questions. Each question carries 2} \textbf{2} \\ \textbf{marks.}$

 $10Q \times 2M = 20M$

1.	Define Perceptron.	2 Marks	L1	CO1
2.	Mention any 4 applications of Machine Learning.	2 Marks	L1	CO1
3.	Calculate the output of the sigmoid function for the following input values: 1. x=0 2. x =-1	2 Marks	L3	CO1
4.	Define Overfitting with suitable example.	2 Marks	L1	CO2
5.	Outline the significance of dropout in deep learning.	2 Marks	L1	CO2
6.	Describe the significance of GRU compare to LSTM.	2 Marks	L2	CO3
7.	Name the layers of CNN.	2 Marks	L1	CO3
8.	Compute Avg pooling from the following table data: 34 48 36 128	2 Marks	L2	CO3

9.	State features of Autoencoder.	2 Marks	L1	CO4
10.	Recall any four applications of Restricted Boltzmann machine.	2 Marks	L1	CO4

Part B

	Answer the Questions.			Total Marks 80M			
11.	a.	Prove the following using differentiation.	10 Marks	L3	CO1		
		1. sigmoid(x)=sigmoid(x)(1-sigmoid(x))					
		2. $tanh(x)=1-tanh^2(x)$					
	b.	Develop a python code for applying different loss functions on	10 Marks	L3	CO1		
	.	any data set.	To Marks	Lo	doi		
		Or					
12.	a.	Consider a Multilayer Perceptron which consists of three layers such as input, hidden & output layer. Input layer consists of 2 nodes, hidden layer consists of 2 neurons and 1 neuron in output layer. Further it has weights between input layer to hidden layer, such as w13, w14, w23, w24, Weights between hidden to output are w35, w45. Determine the total error for the given MLP. Assume Learning rate =0.5.	10 Marks	L3	CO1		
	b.	Develop a python code to design a MLP for implementing classification and fine-tuning for the given house price data.	10 Marks	L3	CO1		
13.	a.	Elucidate Lasso Regularization and Ridge Regularization.	10 Marks	L2	CO2		
	b.	Write a python code to implement Lasso Regularization.	10 Marks	L3	CO2		
14.	a.	Or Discuss various types of hyperparameters in deep learning.	10 Marks	L2	CO2		
17.		71 71 1					
	b.	Develop a python for implementing 4 weight initialization.	10 Marks	L3	CO2		
15.	a.	How GRU is working? Demonstrate with neat sketch.	10 Marks	L2	CO3		
	b.	Write a Python code for sentiment analysis using GRU for IMDB dataset.	10 Marks	L3	CO3		
		Or	•				

16.	a.	Demonstrate the architecture of LSTM and their equations.	10 Marks	L	CO3
	b.	Implement a python code for LSTM using MNIST data set.	10 Marks	L	CO3
			_		
17.	a.	Elucidate any 4 types of Autoencoders.	10 Marks	L2	CO4
	b.	Develop a python code for implementing convolution autoencoder.	10 Marks	L	CO4
		Or			
18.	a.	Explain architecture of Boltzmann machine.	10 Marks	L2	CO4
	b.	Consider a model which consists of two layers hidden and visible layer. Visible layer and hidden layer consists of two nodes each. The below given model takes input as binary combination of numbers. Deduce the value of P(v) using Boltzmann machine.	10 Marks	L3	CO4