

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOIS	Program: MCA		
Course Code: CSA4036	Course Name: R Programming for Data Science		
Semester:IV	Max Marks: 100 Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	25.5	25.5	24.5	24.5	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

$10Q \times 2M = 20M$

1.	What is R, and why is it widely used in data analysis?	2 Marks	L1	CO1
2.	What is the role of the aes() function in ggplot2?	2 Marks	L1	CO1
3.	What is the difference between select() and mutate() in dplyr?	2 Marks	L1	CO1
4.	List the common dataset formats.	2 Marks	L1	CO2
5.	Summarize the common Causes of Anomalies.	2 Marks	L1	CO2
6.	How can you detect anomalies in numerical data? Name one method.	2 Marks	L1	CO2
7.	What is the purpose of using a training and test dataset in regression analysis?	2 Marks	L1	CO3
8.	What are outliers, and how do they affect regression models?	2 Marks	L1	CO3
9.	What is the output of logistic regression in a classification problem?	2 Marks	L1	CO4
10.	Write the advantages of using SVM for classification.	2 Marks	L1	CO4

Part B

Answer the Questions.

Total Marks 80M

		Answer the Questions. Total Ma		ITKS OUM		
11.	a.	Apply and implement a program in R to determine whether a person is eligible to vote using an If-Else statement. (i)The program should take the person's age as input and display the eligibility status based on the following criteria: 18 years and above → Print "Eligible to vote" Below 18 years → Print "Not eligible to vote" (ii)Write the R program to check voting eligibility based on these conditions.	20 Marks (10+10)	L3	C01	
		Or			ı	
12.	a.	Build a program in R to classify student grades based on their scores using an If-Else statement. (i)The program should take a student's score as input and assign a grade based on the following criteria: 90 and above → Grade A 80 to 89 → Grade B 70 to 79 → Grade C 60 to 69 → Grade D Below 60 → Grade F (ii)Write the R program to determine the grade of a student based on these conditions.	20 Marks (10+10)	L3	CO1	
13.	a.	Describe the concept of Covariation and explain how to compute the covariance matrix using a sample dataset. Provide a detailed explanation of the steps involved and demonstrate the computation with an example dataset.	10 Marks	L2	CO2	
	b.	Explain the concepts of Patterns and Models. Discuss their importance in data analysis and provide examples of how they are used to derive insights from data.	10 Marks	L2	CO2	
		0r				
14.	a.	Explain various visualization techniques used in data analysis. Provide examples using a sample dataset to demonstrate how these techniques can be applied to uncover insights.	10 Marks	L2	CO2	
	b.	Describe missing values in a dataset with an example. Discuss the methods available for handling missing values effectively.	10 Marks	L2	CO2	
15.	a.	Experiment the following tasks with the iris dataset, which contains four attributes (Sepal Length, Sepal Width, Petal Length, Petal Width) and a categorical variable (Species): (i)Demonstrate the R code to install and load the necessary packages. Split the dataset into 70% training and 30% testing sets.	20 Marks (10+10)	L3	CO 3	

		(ii)Demonstrate the R code to identify patterns and Models in the dataset.					
	0r						
16.	a.	Apply the data points: 3, 6, 7, NaN, 9, treat them as values at	20 Marks	L3	CO		
		equally spaced time intervals (e.g., t = 1 to 5).			3		
		(i) Apply a simple linear regression model to estimate the	(10+10)				
		missing value (NaN).					
		(ii) Show all steps and calculations clearly.					

17.	a.	(i) Demonstrate a decision tree model using the Iris dataset.	20 Marks	L2	СО
		(ii) Show the tree and explain how the model splits based on	(10+10)	L2	4
		attribute values.			
	Or				
18.	a.	(i) Outline logistic regression on the Iris dataset to classify	20 Marks	L2	CO
		flower species.	(10+10)		4
		(ii) Demonstrate R code and interpret the output using accuracy		L3	
		and a confusion matrix.			