|--|



# **PRESIDENCY UNIVERSITY**

### BENGALURU

## End - Term Examinations - MAY 2025

Date: 21-05-2025

**Time:** 01:00 pm – 04:00 pm

| School: SOIS         | Program: MCA                             |                |  |
|----------------------|------------------------------------------|----------------|--|
| Course Code: CSA4040 | Course Name: Natural Language Processing |                |  |
| Semester: IV         | Max Marks: 100                           | Weightage: 50% |  |

| CO - Levels | CO1 | CO2 | CO3 | CO4 | CO5 |
|-------------|-----|-----|-----|-----|-----|
| Marks       | 20  | 20  | 30  | 30  |     |

#### Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

#### Part A

| Answer ALL the Questions. Each question carries 2marks. |                                                                                                                                                  |         | 10Q x 2M=20M |            |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|------------|--|--|
| 1.                                                      | Name the algorithm that is used to generate the best possible state sequence, given the observation sequence.                                    | 2 Marks | L1           | CO3        |  |  |
| 2.                                                      | State true or false. The XOR gate is a linear separable function.                                                                                | 2 Marks | L1           | CO3        |  |  |
| 3.                                                      | Name the activation function that takes a vector as input and returns a probability distribution.                                                | 2 Marks | L1           | CO3        |  |  |
| 4.                                                      | State any multilingual pre-trained language model that consists of only<br>Indian languages (and English).                                       | 2 Marks | L1           | CO3        |  |  |
| 5.                                                      | State GPE in the context of named entity recognition.                                                                                            | 2 Marks | L1           | CO3        |  |  |
| 6.                                                      | Write the output of the following program:<br>from nltk.stem import PorterStemmer<br>stemmer = PorterStemmer()<br>print(stemmer.stem("dancing")) | 2 Marks | L1           | <b>CO4</b> |  |  |
| 7.                                                      | Name the NLP task which uses the NLTK resource<br>"averaged_perceptron_tagger_eng"                                                               | 2 Marks | L1           | <b>CO4</b> |  |  |

| 8.  | Recall the function in NLTK, which takes a text as input and splits the text into sentences, returning a list of sentences as output.      | 2 Marks | L1 | <b>CO4</b> |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---------|----|------------|
| 9.  | State the Python library which is used to parse CSV files.                                                                                 | 2 Marks | L1 | <b>CO4</b> |
| 10. | Fill in the blanks for the below code to load the Spacy model for<br>different NLP tasks:<br>import spacy<br>nlp = spacy("en_core_web_sm") | 2 Marks | L1 | <b>CO4</b> |

# Part B

| _   |                                                                                                                                                                                                         | Answer the Qu                                       | iestions.                                                 | Total Mark | <b>xs 80</b> ] | М   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|------------|----------------|-----|
| 11. | Associate the entries ir                                                                                                                                                                                | n column A with those of                            | columns B and C.                                          | 20 Marks   | L2             | C01 |
|     | Column A                                                                                                                                                                                                | Column B                                            | Column C                                                  |            |                |     |
|     | A. Sentiment<br>Analysis                                                                                                                                                                                | <b>F.</b> Syntactic<br>Grammars                     | <b>K.</b> 1954                                            |            |                |     |
|     | <b>B.</b> Part-of-Speech<br>Tagging                                                                                                                                                                     | <b>G.</b> Document<br>Classification                | L. Colourless Green<br>Ideas Sleep Furiously              |            |                |     |
|     | <b>C.</b> Noam Chomsky                                                                                                                                                                                  | H. Machine<br>Translation                           | M. Turing Test                                            |            |                |     |
|     | <b>D.</b> Alan Turing                                                                                                                                                                                   | I. Word Classification                              | N. Penn Treebank                                          |            |                |     |
|     | <b>E.</b> Georgetown<br>Experiment                                                                                                                                                                      | J. Imitation Game                                   | <b>O.</b> Binary Polarity<br>(Eg. Positive /<br>Negative) |            |                |     |
|     |                                                                                                                                                                                                         | ers, you ONLY NEED TO<br>all 3 entities in your gro |                                                           |            |                |     |
|     | -                                                                                                                                                                                                       | Or                                                  |                                                           |            |                |     |
| 12. | <ul> <li>Classify each of the following sentences as either positive, negative, neutral, or sarcastic:</li> <li>A. Huggingface Transformers was recognized as the Best System at EMNLP 2020.</li> </ul> |                                                     |                                                           |            | L2             | CO1 |
|     |                                                                                                                                                                                                         |                                                     |                                                           |            |                |     |
|     | B. Detecting Sarca                                                                                                                                                                                      |                                                     |                                                           |            |                |     |
|     | C. The rain in Spai                                                                                                                                                                                     |                                                     |                                                           |            |                |     |
|     | D. The major flaw                                                                                                                                                                                       |                                                     |                                                           |            |                |     |
|     | <ul><li>fighting that goes on for close to 300 episodes.</li><li>E. Donald Trump, who is a stable genius, is the greatest President</li></ul>                                                           |                                                     |                                                           |            |                |     |
|     | of the United States in its history.                                                                                                                                                                    |                                                     |                                                           |            |                |     |
|     | F. The plot of the movie is extremely unpredictable.                                                                                                                                                    |                                                     |                                                           |            |                |     |
|     |                                                                                                                                                                                                         | the car is extremely unp                            |                                                           |            |                |     |
|     | -                                                                                                                                                                                                       | he mobile phone gives a                             |                                                           |            |                |     |
|     | I. The battery of t                                                                                                                                                                                     | he mobile phone gives a                             | bad backup of 2 hours.                                    |            |                |     |

|     | J. The bat<br>hours.                                                                                                                      | tery of the mol | oile phone gives a         | n awesome backup of 2                                      | 2        |     |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|------------------------------------------------------------|----------|-----|-----|
| 13. | For the following data, draw the trellis, and predict the part-of-speech tags for the sentence "Count the vote".<br>Emission Probability: |                 |                            | n 20 Marks                                                 | L3       | CO3 |     |
|     |                                                                                                                                           | DT              | NN                         | VB                                                         |          |     |     |
|     | The                                                                                                                                       | 0.2             | 0                          | 0                                                          |          |     |     |
|     | Fans                                                                                                                                      | 0               | 0.1                        | 0.2                                                        |          |     |     |
|     | Watch                                                                                                                                     | 0               | 0.3                        | 0.15                                                       |          |     |     |
|     | Race                                                                                                                                      | 0               | 0.1                        | 0.3                                                        | -        |     |     |
|     | Count                                                                                                                                     | 0               | 0.2                        | 0.2                                                        |          |     |     |
|     | Vote                                                                                                                                      | 0               | 0.1                        | 0.2                                                        |          |     |     |
|     | Stop                                                                                                                                      | 0               | 0.2                        | 0.2                                                        |          |     |     |
|     | Transition Pro                                                                                                                            |                 |                            |                                                            |          |     |     |
|     |                                                                                                                                           | DT              | NN                         | VB                                                         |          |     |     |
|     | \$(START)                                                                                                                                 | 0.8             | 0.1                        | 0.1                                                        |          |     |     |
|     | DT                                                                                                                                        | 0               | 0.9                        | 0.1                                                        |          |     |     |
|     | NN                                                                                                                                        | 0.1             | 0.4                        | 0.5                                                        |          |     |     |
|     | VB                                                                                                                                        | 0.5             | 0.4                        | 0.1                                                        |          |     |     |
|     | Mention the Vi<br>well as the part                                                                                                        | -               | -                          | nters for each node, as                                    | 5        |     |     |
|     |                                                                                                                                           |                 | Or                         |                                                            |          |     |     |
| 14. | part-of-speech                                                                                                                            | tags for the    |                            | trellis, and predict the<br>e count". Mention the<br>node. |          | L3  | CO3 |
| 15. | Solve the below from the gensin                                                                                                           |                 | sing the <b>glove-wi</b> l | ki-gigaword-50 mode                                        | 20 Marks | L3  | CO2 |
|     |                                                                                                                                           |                 | -                          | between 2 words. Cal<br>words "dog" and "cat".             | 1        |     |     |

|     | b. Write a function to complete the analogy of wordA:wordB=wordC:?                      |          |     |            |
|-----|-----------------------------------------------------------------------------------------|----------|-----|------------|
|     | Your function must return the missing word. Call the function to                        |          |     |            |
|     | complete the analogy "man:woman=king:?"                                                 |          |     |            |
|     |                                                                                         |          |     |            |
|     | Or                                                                                      |          |     |            |
| 16. | Solve the problem of language identification by writing a function in                   | 20 Marks | L3  | CO2        |
|     | Python to find out the language of a given text. Your function should                   |          |     |            |
|     | convert the text into a bag-of-words representation and the                             |          |     |            |
|     | Multinomial Naïve Bayes classifier.                                                     |          |     |            |
|     |                                                                                         |          |     |            |
|     |                                                                                         | 00.14 J  |     |            |
| 17. | Find the sentiment scores of a text using VADER and Use that                            | 20 Marks | L3  | CO4        |
|     | information to classify whether the text is positive or negative. Test the              |          |     |            |
|     | code by calling the function for sentiment scores prediction. Call the                  |          |     |            |
|     | function for the input "I love the new design of the website."                          |          |     |            |
|     | Or                                                                                      |          |     |            |
| 18. | Use a Hidden Markov Model with the Forward Algorithm using the                          | 20 Marks | L3  | <b>CO4</b> |
|     | following parameters:                                                                   |          |     |            |
|     |                                                                                         |          |     |            |
|     | • States: ['U1', 'U2', 'U3']                                                            |          |     |            |
|     | • Observations: ['R', 'G', 'B'] (Red, Green, Blue)                                      |          |     |            |
|     | • Observation Sequence: ['R', 'R', 'G', 'G', 'B']                                       |          |     |            |
|     | • Initial Probabilities: [0.4, 0.3, 0.3]                                                |          |     |            |
|     | • Transition Probabilities: [[0.1, 0.4, 0.5], [0.6, 0.2, 0.2], [0.3, 0.4,               |          |     |            |
|     | 0.3]]                                                                                   |          |     |            |
|     | <ul> <li>Observation Probabilities: [[0.3, 0.5, 0.2], [0.1, 0.4, 0.5], [0.6,</li> </ul> |          |     |            |
|     | • Observation Probabilities: [[0.5, 0.5, 0.2], [0.1, 0.4, 0.5], [0.6, 0.1, 0.3]]        |          |     |            |
|     | I U. I. U. 511                                                                          |          | l I |            |