Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOCSE	Program: B Tech			
Course Code: CSE2018	Course Name: Theory of Computation			
Semester: VI	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	СО3	CO4
Marks	26	26	24	24

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	Explain hierarchy of Automata in terms of representation power	2 Marks	L2	CO1
2.	Define language with an example.	2 Marks	L2	CO1
3.	Explain reversal and length of the string with example	2 Marks	L2	CO1
4.	State pumping lemma theorem for regular languages	2 Marks	L2	CO2
5.	Define Context Free Grammar with example	2 Marks	L2	CO2
6.	Differentiate NFA and DFA	2 Marks	L2	CO2
7.	Define left recursion in grammar the suitable example	2 Marks	L2	CO3
8.	Define Leftmost derivation and rightmost derivation	2 Marks	L2	CO3
9.	Differentiate Turing machine and PDA	2 Marks	L2	CO4
10.	Explain the 7 tuples of Turing machine	2 Marks	L2	CO4

Answer the Questions.

Total Marks 80M

11.	a.	Let L1= $\{a, b, ab\}$ L2= $\{00, 11\}$ and L3= $\{x, xy, yx\}$, Find the	10 Marks	L3	CO
		following operations.			1
		1. Concatenation of L1L2.			
		2. L2 L2 ^R			
		3. L3*			
		4. L2+			
		5. L3 ³			
	b.	List out the applications of	10 Marks	L2	CO
		1. Finite Automata			1
		2. Pushdown Automata			
		3. Turing Machine			
	I	Or	1	I	I
12.	a.	Let $L=\{a,b\}^2$ and $M=\{0,1\}^2$. Generate the language X Such that string	10 Marks	L2	CO
		in X={w/w \in LM }, show any three operations possible on the			1
		resultant language.			
	b.	Explain about the following with examples.	10 Marks	L2	CO
		1) Alphabet			1
		2) Strings			
		3) Empty Strings			
		4) Length of the string			
		5) Concatenation of two strings			
13.	a.	Convert the Regular Expression (b + (ab))* a into NFA with &	10 Marks	L3	СО
		using Thompson's rule.			2
	b.	Construct DFA to accept the strings with a's and b's such that	10 Marks	L3	СО
		the string end with 'aab'.			2
		Or			
14.	a.	Convert the given NFA into its equivalent DFA.	10 Marks	L3	СО
					2
		0 0,1 1			
		1			
	b.	Convert the given NFA into its equivalent DFA.	10 Marks	L3	CO

15.	a.	Consider the following grammar,	10 Marks	L3	CO
		S -> aB bA			3
		A -> aS bAA a			

		B -> bS aBB b			
		Find the Left most Derivation, Right most Derivation and Parse			
		Tree for the string aabbabba.			
	b.	Minimize the given grammer	10 Marks	L3	СО
	D.	$S \rightarrow ASB$	10 Marks	ГЭ	3
					3
		$A \rightarrow aAS \mid a \mid \varepsilon$			
		$B \to SbS \mid A \mid bb$			
	1	Or		1	
16.	a.	Consider the following grammar,	10 Marks	L3	CO
		E-> E+T T			3
		T-> T * F F			
		F-> (E) id			
		Find the Left most Derivation, Right most Derivation and Parse			
		Tree for the string id + (id * id).			
	b.	Prove using pumping Lemma that L={a ⁿ b ⁿ /n>0} is regular or	10 Marks	L3	CO
		not			3
	ı				
17.	a.	Design PDA for L= $\{a^nb^n/n>0\}$ with empty stack design	10 Marks	L3	CO 3
	h	Design a Turing Machine to newform the proper Culturation of	10 Marila	L3	
	b.	Design a Turing Machine to perform the proper Subtraction of	10 Marks	L3	CO
		two unary numbers.			4
	1	Or	·	T _	I _
18.	a.	Design PDA for L={PPR/P ϵ (x,y)+} with final state acceptance	10 Marks	L3	CO
					4
	b.	Design a Turing Machine to accept $L=\{2^n3^n/n>0\}$ and represent	10 Marks	L3	CO
		in all three forms			4