Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOCSE	Program: ISE			
Course Code : CSE2051	Course Name: Information Retr	rieval		
Semester: VI	Max Marks:100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4
Marks	26	26	24	24

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	Define the term "Information Retrieval"	2 Marks	L1	CO1
2.	State the main idea behind the Boolean Retrieval Model.	2 Marks	L1	CO2
3.	What is an inverted index?	2 Marks	L1	CO3
4.	Define a recommender system.	2 Marks	L1	CO4
5.	What is the retrieval process in an IR system?	2 Marks	L1	CO1
6.	What is the vector space model?	2 Marks	L1	CO2
7.	Define signature files in text indexing.	2 Marks	L1	CO3
8.	What is a baseline predictor in collaborative filtering?	2 Marks	L1	CO4
9.	Differentiate between data retrieval and information retrieval.	2 Marks	L1	CO1
10.	Define TF-IDF.	2 Marks	L1	CO2

Part B

Answer the Questions.

Total Marks 80M

11.	a.	Explain the historical development of IR systems and their modern transformations.	10 Marks	L2	CO1			
	0r							
12.	a.	Design a small-scale IR system for an online library and explain its components.	10 Marks	L2	CO1			

13	a.	Documents:	10 Marks	L3	CO1

20.	a.	Explain crawler politeness and robots.txt protocol.	10 Marks	L2	CO3
		OI .			
		language detection. Or			
19.	a.	Explain how multilingual crawling is implemented using	10 Marks	L2	CO3
		c) Calculate NDCG			
		a) Compute DCGb) Compute IDCG for ideal order			
18.	a.	Ranked documents have relevance scores: [3, 2, 3, 0, 1] Ideal ranking = [3, 3, 2, 1, 0]	10 Marks	L3	CO2
10		Or	4034 1	7.0	600
		Precision, Recall, F1 Score, Accuracy, Specificity			
		Compute:			
		FN = 15, TN = 35			
		TP = 45, FP = 5			
17.	a.	Given Confusion Matrix:	10 Marks	L3	CO2
		based adjustment.	20 Paulio		
16.	a.	Explain relevance feedback mechanisms with examples of user-	10 Marks	L2	CO2
		with real-world use cases. Or			
15.	a.	Compare Boolean, Vector Space, and Probabilistic IR models	10 Marks	L2	CO2
		reduction assuming 30% of vocabulary are stopwords			
		Heaps' Law) b) If the stopwords are removed, estimate the percentage			
		a) Estimate the total token count and vocabulary size (use			
		D3: 200 tokens			
		D2: 500 tokens			
		D1: 300 tokens			
14.	a.	A collection has the following document word counts:	10 Marks	L3	CO1
		Or			
		document d) Rank the documents based on similarity			
ļ		c) Compute cosine similarity between the query and each			
		a) Create a binary term-document matrixb) Represent the query "retrieval evaluation" as a binary vector			
ļ					
		D3: "evaluation of information systems"			
		D2: "retrieval techniques and evaluation"			
		D1: "retrieval models are powerful"			
ļ		D1: "retrieval models are powerful"			

21.	a.	Given a m	nini web g	raph with	and the following links:	10 Marks	L3	CO3	
		P1 → P2,	Р3						
		P2 → P4							
		P3 → P2,	P4						
		P4 → P5							
		P5 → non	ie						
		-	m BFS tra the front te indexir	tep ach page					
_	•	1			()r	1	1	
22.	a.	Given:					10 Marks	L3	CO3
		Query: "s	earch dat						
		D1: "sear	ch engine	data pro	cessing"				
		D2: "retri	ieval and i						
		D3: "data	science a						
		b) Compu documen	ite cosine	m presence n query and each					
		ej Raini a	io cument	basea or	1 Jiiiiiiai i	19 50010			
23.	a.	_	recomme back is us		an e-lear	ning platform and suggest	10 Marks	L2	CO4
					()r			
24.	a.	Explain h recomme			mproves	user trust in	10 Marks	L2	CO4
25.	a.	Given ite	m ratings:	:			10 Marks	L3	CO4
		User	Item1	Item2	Item3	7			
		U1	4	5	?				
		U2	3	5	4				
		U3	2	3	5				
		a) Compu		similarity	y betwee	n Item X and Item Z, Item Y			
		h) Predic	t U1's rati	ng for Ite	m 7				
		b) I redic	t OI STALL	ing for ite		Or			
26.	a.	User U1 h	nas rated·			·-	10 Marks	L3	CO4
			Action, Ac	dventure					
			Action, Sc						
L	I	1 3 - 1 - 2 - 2 - 1					I.	I	1

Movie C: Action, Comedy		
Use binary vectors and cosine similarity to: a) Construct user profile vector b) Compute similarity between profile and Movie C c) Recommend or not?		