

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

Date: 27-05-2025

Time: 09:30 am – 12:30 pm

School: SOCSE	Program: B. Tech				
Course Code: CSE3011	Course Name: REINFORCEMENT LEARNING				
Semester: VI	Max Marks: 100	Weightage: 50%			

CO – Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	26	24	24	

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.10Q x 2M=20M

1.	Explain the elements of RL	2 Marks	L2	C01
2.	Define 'reward' and 'return' for an episodic task with an example for each	2 Marks	L1	CO1
3.	Define a) Episode b) Optimal policy	2 Marks	L1	C01
4.	Define Q function	2 Marks	L1	CO2
5.	Write any two differences between on-policy and off policy TD Control algorithms	2 Marks	L2	CO3
6.	Define Value function	2 Marks	L1	CO2
7.	What is the value of the cards J,4,Q and 'Ace' in the blackjack game?	2 Marks	L1	CO3
8.	What is the significance of T in softmax exploration?	2 Marks	L1	C04
9.	Write the equation to find V(S) in the Monte Carlo method	2 Marks	L2	C02
10.	Define Thompson sampling of an arm in MAB Problem	2 Marks	L1	CO4

Part B

		Answer theQuestions.	Total Ma	arks 8	0 M
11.	a.	Figure 3.2: Transition probability of performing action <i>a</i> , in state <i>s</i> ,	Total Ma 10Mark s	L3	CO1
	b.	Identify Bellman equation to the value function of a state in a deterministic environment and stochastic environment . Explain each term in it. Find the value of all the states in the trajectory given below using Bellman equation. Assume Y=1 $\overbrace{S_0 \ +2}^{a_0} \overbrace{S_1 \ +2}^{a_1} \overbrace{S_2 \ +1}^{a_2} \overbrace{S_3 \ +2}^{a_3} \overbrace{S_4}^{a_3}$	10 Marks	L2	CO1
12.	a.	Or Implement the reinforcement learning environment namely,	10	L3	C01
L	I	I		1	L

	Frozen Lake Environment using a random policy and show the output of the following:a. Create and render the environmentb. Action Spacec. State Spaced. Generate 20 Episodes and print Return of each episode	Marks		
b.	Discuss stochastic environment and deterministic environment	10 Marks	L2	C01
	in RL with an example.			

13.	a.	Write a python program to find an optimal policy using Q- learning for the frozen lake environment with alpha=0.85 and gamma=0.90 and epsilon =0.8 Create and render the environment Generate policy using 20episodes with 30 timesteps	10 Marks	L3	CO2
	b.	Print the optimal policy Explain different types of RL environments with an example	10Marks	L2	CO2
		each.			
		Or			
14.	a.	Articulate TD Prediction algorithm in FZLE environment	10 Marks	L3	CO2
	b.	Discuss the appropriate situations that are suitable to apply	10 Marks	L2	CO2
		DP,MC or TD methods to learn optimal policy			

15.	a.	Implement SARSA algorithm to learn the optimal policy in	10 Marks	L3	CO3
		Frozen Lake environment using Python.			
	b.	Articulate TD Control algorithm in FZLE environment	10Marks	L3	CO3
		Or			
16.	16. a. Interpret Thompson sampling strategy to overcome the				CO3
		exploration – exploitation dilemma with the algorithm			
	b. Compare SARSA and Q Learning exploration strategies		10 Marks	L3	CO3

17.	a.	Artio MAE	culate contextual Ban 3	10 Marks	L3	CO4		
			arm	Q				
			arm 1	1]			
			arm 2	0]			
			arm 3	0]			
			arm 4	0]			
				•	-			

	b	Briefly Explain the applications of Reinforcement Learning	10 Marks	L2	CO4
	•	Or			
18.	a.	Compare advantages and disadvantages of Monte carlo, Dynamic Programming and Temporal Difference in detail	10 Marks	L3	CO4
	b	Demonstrate Upper Confidence Bound to overcome the exploration –exploitation dilemma with the algorithm	10Marks	L2	CO4