Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOCSE	Program : B. Tech in Computer Science & Engineering				
Course Code: CSE3020	Course Name: Smart Contract a	and Solidity			
Semester: VI	Max Marks: 100	Weightage: 50%			

CO - Levels	CO1	CO2	CO3	CO4
Marks	6	26	38	30

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.	Define a smart contract.	2 Marks	L1	CO1
2.	List the basic data types in Solidity	2 Marks	L1	CO1
3.	Identify three special variables available in Solidity contracts.	2 Marks	L1	CO1
4.	What is the purpose of the msg.sender variable in Solidity?	2 Marks	L1	CO2
5.	Name a few Ethereum clients.	2 Marks	L1	CO2
6.	Describe how transactions are processed in Ethereum.	2 Marks	L2	CO2
7.	Differentiate between contract deployment and contract execution.	2 Marks	L2	CO3
8.	Explain the structure of a Solidity smart contract.	2 Marks	L2	CO3
9.	Explain what the "proof of ownership" contract ensures.	2 Marks	L2	CO3
10.	Describe the function of Web3.js in Ethereum DApps.	2 Marks	L2	CO3

Part B **Answer the Questions. Total Marks 80M** Analyze how the structure of a Solidity file supports modular 10 Marks **L4** CO 4 0r Examine how control structures in Solidity affect contract 10 Marks **L4** CO 4 Identify the use of modifiers for access control—are they always 10 Marks CO **L4** 3 $\mathbf{0r}$ Distinguish the risks and tradeoffs of deploying contracts on 10 Marks **L4** \mathbf{CO} nublic testnets before mainnet

(e.g., mapping vs. struct arrays). Or 16. a. Compare how external libraries and contracts differ in deployment, gas, and access. 17. a. Determine the lifecycle of a transaction from a MetaMask wallet to execution in the EVM. Or 18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		3
(e.g., mapping vs. struct arrays). Or 16. a. Compare how external libraries and contracts differ in deployment, gas, and access. 17. a. Determine the lifecycle of a transaction from a MetaMask wallet to execution in the EVM. Or 18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		
Or 16. a. Compare how external libraries and contracts differ in deployment, gas, and access. 17. a. Determine the lifecycle of a transaction from a MetaMask wallet to execution in the EVM. Or 18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.	L4	CO
16. a. Compare how external libraries and contracts differ in deployment, gas, and access. 17. a. Determine the lifecycle of a transaction from a MetaMask wallet to execution in the EVM. Or 18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		2
deployment, gas, and access. 17. a. Determine the lifecycle of a transaction from a MetaMask wallet to execution in the EVM. Or 18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		
17. a. Determine the lifecycle of a transaction from a MetaMask wallet to execution in the EVM. Or 18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 20 Marks 20 Marks deployed smart contract that stores user profiles and allows updating only by the respective user address.	L4	CO
18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		2
18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		
Or 18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.	L3	CO
18. a. Examine how using require vs assert affects gas usage and debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		2
debugging. 19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 20 Marks 20 Marks 20 Marks		
19. a. Classify a Solidity inheritance structure where a base contract defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.	L3	СО
defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		2
defines access control, and child contracts enforce it. Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		
Or 20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.	L2	CO
20. a. Explain a DApp interface using Web3.js that interacts with a deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.		3
deployed smart contract with dynamic inputs. 21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address. 20 Marks		
21. a. Demonstrate a contract that stores user profiles and allows updating only by the respective user address.	L2	СО
updating only by the respective user address.		3
updating only by the respective user address.		
	L3	CO
		4
0r		
22. a. Employ a Solidity smart contract that tracks asset ownership 20 Marks	L3	СО
and allows only the owner to transfer it.		4

11.

12.

13.

14.

a.

a.

programming.

the best option?

behavior.