Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

Date: 31-05-2025 **Time:** 09:30 am – 12:30 pm

School: SOCSE	Program: B.Tech-CSE			
Course Code:CSE3077	Course Name: Compiler Design			
Semester: VI	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	24	26	26	NA

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	Differentiate Compiler and Interpreter.	2 Marks	L2	CO1
2.	Define token, Pattern and lexeme.	2 Marks	L1	CO1
3.	List the possible error-recovery actions in Lexical Errors.	2 Marks	L1	CO2
4.	Write the rules for eliminating left factoring in a grammar. Give an example.	2 Marks	L1	CO2
5.	What is backpatching?	2 Marks	L1	CO3
6.	How synthesized attributes are evaluated explain with example.	2 Marks	L2	CO3
7.	List types of Intermediate Code Generation Techniques?	2 Marks	L1	CO3
8.	What is Constant Folding.	2 Marks	L1	CO4
9.	What are the rules to choose a Leader?	2 Marks	L1	CO4
10.	Explain any one issue of Code Generation?	2 Marks	L2	CO4

Part B Answer the Questions.

Total Marks 80M

11.	a.	Explain Phases of Compiler in detail with an the following	10 Marks	L3	CO1
		example			
		X=A*B/N+P-D			
	b.	Develop Lex program to count number of words in a given line.	10 Marks	L3	CO1
	ı	Or			
12.	a.	Define Compiler Construction Tool? List its types? Explain in	10 Marks	L2	CO1
		detail about each tool.			
	b.	What is a Lexical Error? List Lexical Errors? Explain error	10 Marks	L2	CO1
		recovery in Lexical Analyzer.			
13.	a.	Construct Predictive parse table for the following Grammar	15 Marks	L3	CO2
15.	۵.	S → iEtS iEtSeS a	15 Marks		002
		E → b			
	b.	What is Recursive Descent Parser? Explain with an example.	5 Marks	L2	CO2
		Or			
14.	a.	Construct CLR(1) parsing table for the following grammar	20 Marks	L3	CO2
		S → L = R R			
		L → * R id			
		$R \rightarrow L$			
15.	a.	Make use of any example to explain Annotated Parse Tree.	5 Marks	L3	CO3
	b.	Differentiate S-Attributed and L Attributed SDT.	5 Marks	L2	CO3
	c.	Define DAG? Construct DAG for the following Example	10 Marks	L3	CO3
		a + a * (b - c) + (b - c) * d			
		Or	I.		
16.	a.	Write a program to convert the BNF rules into Yacc form and	20 Marks	L3	CO3
		generate abstract syntax tree.			
17.	a.	How to design a simple code generator? Write Code Generation	15 Marks	L2	CO4
171		Algorithm? Explain each step in detail.	10 1-141110		001
	b.	Construct a flow graph for the following three address	5 Marks	L3	CO4
		statements	o mans		001
		L1: I = 1			
		L2: if (I < 10) then goto TRUE			
		L3: goto EXIT			
		L4: T1 = b[i]			
		T2 = T1 + c			
		a = T2			
		T3 = I + 1			
		I = T3			
		goto WSTART			
		L5: T4 = a + c			
		Result = T4			
	1	Or	<u> </u>	I	
18.	a.	Write a C program to generate machine code from abstract	20 Marks	L3	CO4
		syntax tree generated by the parser.			
<u> </u>	ı		<u> </u>	I	