Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

School: SOCSE	Program: B. Tech-CSI				
Course Code: CSE3079	Course Name: Parallel Computi	ng			
Semester: IV	Max Marks: 100	Weightage: 50%			

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	26	24	24	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	Define concurrent computing.	2 Marks	L1	CO1
2.	List the applications of parallel computing.	2 Marks	L1	CO1
3.	Define the term uniprocessor system.	2 Marks	L1	CO1
4.	What is meant by prefetching?	2 Marks	L2	CO2
5.	What is the use of multi stage network?	2 Marks	L1	CO2
6.	Draw the diagram of fat tree.	2 Marks	L2	CO2
7.	Classify the types of parallel algorithm models.	2 Marks	L2	CO3
8.	What is the use of speculative decomposition?	2 Marks	L1	CO3
9.	Expand OMP and MPI.	2 Marks	L2	CO4
10.	What is the use of distro_Array?	2 Marks	L1	CO4

Part B

		Answer the Questions.	Total Marks 80M		
11.	a.	Illustrate the parallel processing mechanism with a diagram.	20 Marks	L3	CO1
	•	Or			
12.	a.	Demonstrate the uniprocessor architecture with a diagram and	20 Marks	L3	CO1
		also explain super scalar execution with proper steps			
13.	a.	Demonstrate One-to-all broadcast and all-to-one reduction			
		using	20 Marks	L3	CO2
		i) Mesh topology			
		ii) Ring topology			
		Or		ı	
14.	a.	Sketch the concept of granularity for adding 16 numbers.	10 Marks	L3	CO2
	b.	Interpret the one to all broadcast and all to one reduction using	10 Marks	L3	CO2
		hypercube topology			
4 =			40 1/4		600
15.	a.	Solve the given problem using Recursive Decomposition	10 Marks	L3	CO3
		technique (i) Find the Smallest of given Number [5 Markel			
		(i). Find the Smallest of given Number [5 Marks]			
		(ii). Sort the given list [5 Marks] 15 12 11 1 10 6 8 33 7 4 19 2			
		15 12 11 1 10 6 8 33 7 4 19 2			
	b.	Illustrate Data Decemberation [Database Transactional with	10 Marks	L3	CO3
	D.	Illustrate Data Decomposition [Database Transactions] with	10 Mai KS	ь	COS
		example. Also Explain 15 puzzle solving problem with example.			
		Or			
16.	a.	Illustrate any 5 different types of parallel algorithm models	10 Marks	L3	CO3
		with diagrams.	10 Plui IIS		COD
	b.	Explain Data Decomposition [Matrix Operations] with example.	10 Marks	L3	CO3
	ъ.	Explain Data Decomposition [Flat ix operations] with example.	10 Marks	В	000
17.	a.	Develop a program to find the smallest among N numbers using	10 Marks	L3	CO4
		OpenMP.			
	b.	Develop a MPI program to scatter data {39,45,67,72} with 4	10 Marks	L3	CO4
		processors.			
		Or			
18.	Τ.		10 Marks	L3	CO4
10.	a.	Develop a program to find the sum of 100 natural numbers using OpenMP.	TO Marks	L3	LU4
	b.	Develop a program to process 1 to send out a message	10 Marks	L3	CO4
	".	containing the integer 42 to process 2 using send () and receive	20 1-141111		
		() primitives using MPI.			
	1	O branners on wound that it			