Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

Date: 26-05-2025

Time: 01:00 pm – 04:00 pm

School: SOCSE	Program: B. Tech-CBD/CDV/ISE			
Course Code: CSE3120	Course Name: Operating Systems with Linux Internals			
Semester: IV	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4
Marks	24	26	26	24

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Do not write anything on the question paper other than roll number.

Part A

Ansv	ver ALL the Questions. Each question carries 2marks.	10Q x 2M=20M			
1.	What are the three major activities of an operating system with regard to secondary storage management?	2 Marks	L2	CO1	
2.	Some computer systems do not provide a privileged mode of operation in hardware. Is it possible to construct a secure operating system for these computer systems?	2 Marks	L2	CO1	
3.	Illustrate the use of fork and exec system calls.	2 Marks	L2	CO2	
4.	What are the use of job queues, ready queues and device queues?	2 Marks	L2	CO2	
5.	Priority inversion is a condition that occurs in real time systems – Analyze and justify this statement	2 Marks	L4	CO2	
6.	What is the meaning of the term busy waiting?	2 Marks	L2	CO3	
7.	What are the different ways in which a thread can be cancelled?	2 Marks	L4	CO3	
8.	What is the concept behind strong semaphore and spinlock?	2 Marks	L2	CO3	
9.	Name two hardware instructions and their definitions which can be used for implementing mutual exclusion	2 Marks	L2	CO4	

10.	Consider the given resource allocation graph and check whether deadlock occurs or not?	2 Marks	L3	CO4
	P_1 P_2 P_3			

Part B

Answer the Questions. **Total Marks 80M** 11. Explain different operating system structures with neat sketch. 10 Marks L2 **CO1** a. b. Discuss the essential properties of the following types of 10 Marks L2 **CO1** systems, i) Time sharing systems ii) Multi-processor systems **Distributed systems** iii) 0r Explain the various types of system calls with examples. 12. 10 Marks L2 **CO1** a. b. Explain in detail Inter Process Communication. How message 10 Marks L2 **CO1** passing is used in IPC. 13. Explain any two preemptive scheduling algorithms in brief. **10 Marks** L3 **CO2** a. Consider following processes with length of CPU burst time in milliseconds Process Burst time **P1** 5 P2 10 P3 2 P4 All process arrived in order p1, p2, p3, p4 all time zero i) Draw Gantt charts illustrating execution of these processes for SJF and round robin (quantum=1). ii) Calculate waiting time for each process for each scheduling algorithm. iii) Calculate average waiting time for each scheduling algorithm. What are two differences between user-level threads and 10 Marks L3 **CO2** b. kernel-level threads? Under what circumstances is one type better than the other? 0r 14. Consider following processes with length of CPU burst time in 10 Marks **CO2** L3 a. millisecond.

		December	Devet	Deignites	1			
		Process	Brust	Priority				
			time					
		P1	10	3				
		P2	1	1				
		P3	2	3				
		P4	1	4				
		P5	5	2				
		All processe	es arrived in orde	r p1, p2, p3, p4, p	5 all at time			
		zero.						
		i) Draw G	ant charts illus	trating execution	on of these			
		processes	for SJF, non pr	eemptive prior	ity (smaller			
		priority nu	mber implies a	higher priority	y) & round			
		robin(quan	-					
		-	te turnaround 1	time for each	process for			
		scheduling	0					
		-	waiting time for	0	e			
		Explain the effect of	_	-	-			
		large Number and small number fo	-	-	-			
		suitable example?	i iounu iobin	scheuuning alge				
	b.	Compare and contrast Single-threaded and multi-threaded					L3	CO2
		dompare ana come	10 Marks	10				
		process.	C					
		*						
15.	a.	What is a process?	Explain Process			10 Marks	L2	CO3
15.		What is a process? states that a proces	Explain Process ss can exists.	Control Block wi	th the			
15.	a. b.	What is a process? states that a proce What are critical	Explain Process ss can exists. sections? Why	Control Block wi mutual exclusio	th the n required?	10 Marks 10 Marks	L2 L2	CO3 CO3
15.		What is a process? states that a proces What are critical Explain any two m	Explain Process ss can exists. sections? Why ethods of achievi	Control Block wi mutual exclusio ng mutual exclus	th the n required? ion in detail.			
15.		What is a process? states that a process What are critical Explain any two may Show how to imp	Explain Process ss can exists. sections? Why ethods of achievi plement the wai	Control Block wi mutual exclusio ng mutual exclus t() and signal()	ith the n required? ion in detail. semaphore			
15.		What is a process? states that a process What are critical Explain any two m Show how to imp operations in mul-	Explain Process ss can exists. sections? Why ethods of achievit plement the wai tiprocessor envir	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using	th the n required? ion in detail. semaphore the test and			
15.		What is a process? states that a process What are critical Explain any two m Show how to imp operations in mul- set() instruction.	Explain Process ss can exists. sections? Why ethods of achievit plement the wai tiprocessor envir	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using	th the n required? ion in detail. semaphore the test and			
15.		What is a process? states that a process What are critical Explain any two m Show how to imp operations in mul-	Explain Process ss can exists. sections? Why ethods of achievit plement the wai tiprocessor envir	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using	th the n required? ion in detail. semaphore the test and			
15.		What is a process? states that a process What are critical Explain any two m Show how to imp operations in mul- set() instruction.	Explain Process ss can exists. sections? Why ethods of achievis olement the wai tiprocessor envin The solution sh	Control Block wi mutual exclusio ng mutual exclus t() and signal() onments using ould exhibit m	ith the n required? ion in detail. semaphore the test and inimal busy			
	b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting.	Explain Process ss can exists. sections? Why ethods of achievin olement the wai tiprocessor envin The solution sh	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using ould exhibit m Or can be used to in	ith the n required? ion in detail. semaphore the test and inimal busy	10 Marks	L2	CO3
	b.	What is a process? states that a process What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting.	Explain Process ss can exists. sections? Why ethods of achievit olement the wai tiprocessor envin The solution sh nary semaphore imong n processe	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using ould exhibit m Or can be used to in	ith the n required? ion in detail. semaphore the test and inimal busy	10 Marks	L2	CO3
	b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting.	Explain Process ss can exists. sections? Why ethods of achievit olement the wai tiprocessor envir The solution sh nary semaphore mong n processe m for a bounded	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using ould exhibit m Or can be used to in es -buffer monitor	ith the n required? ion in detail. semaphore the test and inimal busy nplement	10 Marks 10 Marks	L2 L2	CO3
	b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting. Illustrate how a bin mutual exclusion a Design an algorith buffers (portions) Provide an outlin	Explain Process ss can exists. sections? Why ethods of achievis olement the wai tiprocessor envin The solution sh nary semaphore mong n processe m for a bounded are embedded w	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using ould exhibit m Or can be used to in es -buffer monitor ithin the monito to the dining-p	ith the n required? ion in detail. semaphore the test and inimal busy nplement in which the or itself. Also philosophers	10 Marks 10 Marks	L2 L2	CO3
	b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting. Illustrate how a bin mutual exclusion a Design an algorith buffers (portions) Provide an outlin problem using	Explain Process ss can exists. sections? Why ethods of achievin plement the wai tiprocessor envir The solution sh nary semaphore mong n processe m for a bounded are embedded wa e of a solution monitors. Thi	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using ould exhibit m Or can be used to in es -buffer monitor to the dining-p s problem w	ith the n required? ion in detail. semaphore the test and inimal busy nplement in which the or itself. Also ohilosophers ill require	10 Marks 10 Marks	L2 L2	CO3
	b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting. Illustrate how a bin mutual exclusion a Design an algorith buffers (portions) Provide an outlin problem using implementing a	Explain Process ss can exists. sections? Why ethods of achievit olement the wai tiprocessor envin The solution sh nary semaphore mong n processe m for a bounded are embedded w e of a solution monitors. Thi solution using	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using ould exhibit m Or can be used to in es -buffer monitor to the dining-p s problem w	ith the n required? ion in detail. semaphore the test and inimal busy nplement in which the or itself. Also ohilosophers ill require	10 Marks 10 Marks	L2 L2	CO3
	b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting. Illustrate how a bin mutual exclusion a Design an algorith buffers (portions) Provide an outlin problem using	Explain Process ss can exists. sections? Why ethods of achievit olement the wai tiprocessor envin The solution sh nary semaphore mong n processe m for a bounded are embedded w e of a solution monitors. Thi solution using	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using ould exhibit m Or can be used to in es -buffer monitor to the dining-p s problem w	ith the n required? ion in detail. semaphore the test and inimal busy nplement in which the or itself. Also ohilosophers ill require	10 Marks 10 Marks	L2 L2	CO3
16.	b. a. b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting. Illustrate how a bin mutual exclusion a Design an algorith buffers (portions) Provide an outlin problem using implementing a condition variables	Explain Process ss can exists. sections? Why ethods of achievis olement the wai tiprocessor envin The solution sh nary semaphore mong n processe m for a bounded are embedded w e of a solution monitors. Thi solution using s.	Control Block wi mutual exclusio ng mutual exclus t() and signal() conments using ould exhibit m Or can be used to in es -buffer monitor to the dining-p s problem w Pthreads mutex	ith the n required? ion in detail. semaphore the test and inimal busy nplement in which the or itself. Also ohilosophers ill require a locks and	10 Marks 10 Marks 10 Marks	L2 L2 L2	CO3 CO3 CO3
	b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting. Illustrate how a bin mutual exclusion a Design an algorith buffers (portions) Provide an outlin problem using implementing a condition variables	Explain Process ss can exists. sections? Why ethods of achievit plement the wai tiprocessor envir The solution sh nary semaphore mong n processe m for a bounded are embedded w le of a solution monitors. Thi solution using s.	Control Block wi mutual exclusio ng mutual exclusio t() and signal() conments using ould exhibit m Or can be used to in es -buffer monitor to the dining-p s problem w Pthreads mutex	ith the n required? ion in detail. semaphore the test and inimal busy nplement in which the or itself. Also ohilosophers ill require a locks and	10 Marks 10 Marks	L2 L2	CO3
16.	b. a. b.	What is a process? states that a process? What are critical Explain any two m Show how to imp operations in mul- set() instruction. waiting. Illustrate how a bin mutual exclusion a Design an algorith buffers (portions) Provide an outlin problem using implementing a condition variables	Explain Process ss can exists. sections? Why ethods of achievin plement the wait tiprocessor envir The solution sh nary semaphore mong n processes m for a bounded are embedded wate of a solution monitors. This solution using s.	Control Block wi mutual exclusio ng mutual exclus t() and signal() onments using ould exhibit m Or can be used to in es -buffer monitor to the dining-p s problem w Pthreads mutex adlock occurrent tion.	ith the n required? ion in detail. semaphore the test and inimal busy nplement in which the or itself. Also ohilosophers ill require a locks and	10 Marks 10 Marks 10 Marks	L2 L2 L2	CO3 CO3 CO3

		Allo	cation	Max	Available			
		A B	BCD .	ABCD	ABCD			
		$P_0 = 0.0$	012	0012	1520			
		-	000	1750				
		P ₂ 13	354	2356				
		$P_3 = 0.6$	532	0652				
		$P_4 = 0.0$	014	0656				
		Answer the f	following q	uestions us	sing the banker's algorithm:			
		i. What is the	e content o	f the matrix	x Need?			
		ii. Is the syst	em in a saf	e state?				
		_	_		rives for (0,4,2,0), can the			
		request be g	ranted imn	nediately?				
					Or			
18.	a.		-		afe state. Show that it is	10 Marks	L3	CO4
		-	-	-	lete their execution without			
		entering a de			<u> </u>	40.14		00.1
	b.	Consider the	efollowing	snapshot of	f a system:	10 Marks	L3	CO4
		All	ocation	Max	Available			
		Α	BCD	A B C D	ABCD			
		$P_0 = 2$	2001	$4\ 2\ 1\ 2$	3321			
		P ₁ 3	3121	5252				
		P ₂ 2	2103	2316				
		$P_3 = 1$	312	1424				
		P_4 1	432	3665				
		Answer the f	following q	uestions us	sing the banker's algorithm:			
					stem is in a safe state by			
		de	emonstrati	ng an orde	r in which the processes may			
		СС	omplete.					
		ii) If	f a request	from proce	ss P1 arrives for (1,1,0,0), can			
			-	-	mmediately?			
		-	—	-	ss P4 arrives for (0,0,2,0), can			
		th	ie request l	pe granted i	mmediately?			