Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/JUNE 2025

Date: 02-06-2025 **Time:** 01:00 pm – 04:00 pm

School: SOCSE	Program: B. Tech-CBC			
Course Code : CSE3169	Course Name: Modern Cryptography			
Semester: IV	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	32	28	20	20	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.	Differentiate between substitution and transposition ciphers, highlighting	2 Marks	L2	CO1
	their primary differences.			
2.	Identify and explain the security principle that ensures a sender or receiver	2 Marks	L1	CO1
	cannot deny their participation in a communication.			
3.	Examine the key differences between mono-alphabetic and poly-alphabetic ciphers, providing a suitable example.	2 Marks	L2	CO1
4.	Explain the concept of cryptanalysis and its significance in breaking cryptographic systems.	2 Marks	L2	CO2
5.	Compute 7 ¹⁰⁰ (mod 40) using Euler's Theorem.	2 Marks	L1	CO2
6.	Explain what is meant by the term "deterministic" in the context of hashing.	2 Marks	L2	CO1
7.	Differentiate between a collision-resistant and a non-collision-resistant hash function.	2 Marks	L1	CO2
8.	Describe the concept of cryptojacking and how it affects system performance.	2 Marks	L2	CO1
9.	Analyze how a Man-in-the-Middle (MiTM) attack compromises communication security.	2 Marks	L1	CO2
10.	What is Firesheep and what role did it play in raising awareness of session hijacking?	2 Marks	L2	CO1

Part B

Answer the Questions.

Total Marks 80M

11.	a.	Explain the significance of safeguarding data in motion and at rest.		L2	CO1
		How do encryption techniques contribute to ensuring data security?			
	b.	Demonstrate the process of setting up a VPN on a Windows system,	10 Marks	L3	CO2
		outlining each step involved and explaining the purpose of key			
		configuration settings.			

		Or			
12.	a.	Examine the concept of security services as defined by the ITU-T X.800 standard. Provide real-world examples illustrating how these services protect data from potential security threats.	10 Marks	L2	CO2
	b.	Describe the TLS handshake and TLS record protocols, and illustrate the flow of communication using suitable diagrams.	10 Marks	L3	CO4
13.	a.	Identify different cryptographic techniques used for securing data. Demonstrate your understanding of substitution and transposition ciphers by explaining their mechanisms and providing relevant examples.	10 Marks	L2	CO2
	b.	Explain the role of hashing in message authentication, and discuss how	10 Marks	L3	CO3
		MAC and HMAC provide integrity and authenticity.			
4.4	I	Or	10 Marks	12	CO2
14.	a.	Discuss the concept of a Trusted Third Party (TTP) in the context of Public Key Infrastructure (PKI). Assess the role of PKI in enhancing secure communication, emphasizing its impact on authentication and trust.	10 Marks	L2	CO2
	b.	Compare the GDPR and CCPA data privacy regulations, focusing on aspects such as consumer rights, regulatory scope, and enforcement mechanisms	10 Marks	L3	CO3
15.	a.	Investigate various cyber threats that specifically target data security. Propose and justify effective strategies that organizations can implement to mitigate these threats.	10 Marks	L2	CO1
	b.	Demonstrate the step-by-step process of generating a digital signature, and highlight the underlying cryptographic techniques.	10 Marks	L3	CO3
		Or			
16.	a.	Explain the Affine Cipher and demonstrate its encryption process with an example where α = 5 and β = 8, and the plaintext is "HELLO".	10 Marks	L2	CO1
	b.	Outline the major components and objectives of HIPAA, and evaluate its effectiveness in safeguarding patient health information (PHI)	10 Marks	L3	CO3
17.	a.	Define Non-Repudiation in cybersecurity and describe its importance. Illustrate how digital signatures help achieve non-repudiation with a relevant example.	10 Marks	L2	CO1
	b.	Explain how encryption can be exploited in malware and ransomware attacks, and analyze their implications for cybersecurity defense strategies.	10 Marks	L3	CO4
	•	Or			
18.	a.	Given the RSA encryption system with prime numbers p = 23 and q = 17, and public encryption key e = 3: a) Compute the decryption key d using appropriate mathematical steps. b) Demonstrate the decryption of the ciphertext C=165 using modular exponentiation, ensuring a clear breakdown of each step in the computation.	10 Marks	L2	CO1
	b.	Describe how Pretty Good Privacy (PGP) ensures confidentiality, integrity, and authenticity in email communications.	10 Marks	L3	CO4