Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

School: SOCSE	Program: B.Tech - CIT			
Course Code : CSE3177	Course Name: Cyber Physical Systems			
Semester: IV	Max Marks:100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4
Marks	26	26	24	24

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $100 \times 2M = 20M$

1.	List two benefits of CPS in manufacturing.	2 Marks	L1	CO1
2.	Define system dynamics.	2 Marks	L1	CO2
3.	Name two simulation tools used for CPS.	2 Marks	L1	CO3
4.	Define insider threat in CPS.	2 Marks	L1	CO4
5.	What is the meaning of deterministic behavior in SR models?	2 Marks	L1	CO1
6.	List two characteristics of CPS systems.	2 Marks	L1	CO2
7.	What is a Data Flow Graph (DFG)?	2 Marks	L1	CO3
8.	Define authentication in the context of CPS.	2 Marks	L1	CO4
9.	Define interoperability in CPS.	2 Marks	L1	CO1
10.	What is the perception layer in IoT?	2 Marks	L1	CO2

Part B

Answer the Questions.			Total Marks 80M						
11.	a.	Explain the layered architecture of a typical CPS.	10 Marks	L2	CO1				
	Or								
12.	a.	Explain the future trends in CPS.	10 Marks	L2	CO1				
13.	a.	Illustrate a real-world CPS system and its operational workflow.	10 Marks	L2	C01				
Or									
14.	a.	Explain how does CPS contribute to enhanced product development?	10 Marks	L2	C01				
15 .	a.	Summarize smart agriculture applications using CPS	10 Marks	L2	CO2				
		0r							

4.6		O di appoint in the second	40.14	7.0	600						
16.	a.	Outline a CPS platform design for smart transportation.	10 Marks	L2	CO2						
17.	a.	Identify the total energy consumed by 20 sensors, each	10 Marks	L3	CO2						
1/.	a.	consuming 50 mW, transmitting data every 15 minutes, over	10 Marks	Ц	602						
		one day.									
	Or										
18.	a.	Identify the necessary bandwidth for a CPS network	10 Marks	L3	CO2						
		that must transmit data from 100 sensors, each sending an									
		update every second. Assume each update is 0.5 KB in size									
	ı				1						
19.	a.	Explain timed models of computation with examples.	10 Marks	L2	CO3						
		0r									
20.	a.	Compare discrete-time, continuous-time, and hybrid models.	10 Marks	L2	CO3						
21.	a.	A CPS employs a synchronous reactive system where, in	1 0 Marks	L3	CO3						
		every reaction cycle,									
		four tasks must be executed in sequence. The tasks have the									
		following worst-case execution times (WCET):									
		• Task 1: 2.0 ms									
		• Task 2: 3.5 ms									
		• Task 3: 1.5 ms									
		Task 4: 2.0 ms Between tasks, due to communication/synchronization									
		overhead, there is a fixed delay of 0.5ms. Determine:									
		1. The worst-case duration of a reaction cycle.									
		2. Whether a cycle period of 12 ms is feasible.									
		0r									
22.	a.	Make use of SDF graph with three nodes: A, B, and C.	10 Marks	L3	CO3						
	-	Node A: Produces 4 tokens each time it fires.	20110110								
		Node B: Consumes 2 tokens per firing from A's output									
		and produces 6 tokens on its own output.									
		 Node C: Consumes 3 tokens per firing from B's output. 									
		to find out:									
		1. The minimal steady-state repetition vector $[q_A, q_B, q_C]$.									
		2. The throughput if the firing time for each node is 2 ms.									
22	1		10.34	10	604						
23.	a.	Explain confidentiality, integrity, and availability (CIA triad)	10 Marks	L2	CO4						
		in CPS. Or									
24	<u> </u>		10 Ml-	10	604						
24.	a.	Explain the challenges in Internet-wide communication	10 Marks	L2	CO4						
		security.									
25.	a.	Illustrate cybersecurity threats in cloud-connected CPS.	10 Marks	L2	CO4						
	"	Or	20 1-1411110								
26.	a.	Explain security measures for cloud-interconnected CPSs.	10 Marks	L2	CO4						
۷٥.	a.	Lapiani security ineasures for cloud-interconnected GPSS.	10 Mai KS	LL	UU4						