Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOCSE	Program: B. Tech CBC				
Course Code: CSE3345	Course Name: Blockchain Security and Performances				
Semester: VI	Max Marks: 100	Weightage: 50%			

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	38	36	26	-	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.	Define a double-spending attack and its impact on blockchain transactions.	2 Marks	L1	CO1
2.	Identify the purpose of mixing (coin tumbling) in blockchain transactions.	2 Marks	L1	CO1
3.	Construct a python code snippet to create a class named Block including the attributes.	2 Marks	L3	CO1
4.	Define homomorphic encryption and its role in blockchain security.	2 Marks	L1	CO1
5.	What is the purpose of public key cryptography?	2 Marks	L1	CO2
6.	Define an elliptic curve digital signature algorithm (ECDSA).	2 Marks	L1	CO2
7.	What is Keccak-256?	2 Marks	L1	CO2
8.	Compare UTXO and Account-based transaction models.	2 Marks	L2	CO3
9.	Define Tamper-resistance in the context of blockchain.	2 Marks	L1	CO3
10.	What is pseudonymity in blockchain?	2 Marks	L1	CO3

Part B

Answer the Questions.

Total Marks 80M

11.	a.	Examine how coin mixing (tumbling) enhances privacy and security in blockchain transactions. Discuss its functioning, benefits, challenges, and practical applications.	10M	L4	CO1
	b.	Discriminate the implications of smart contract vulnerabilities leading to cyber-attacks, providing examples and possible solutions.	10M	L4	CO1
			I.	ı	

12.	a.	Explain the working of Non-Interactive Zero-Knowledge (NIZK) proofs in blockchain transactions with suitable examples.	10M	L6	CO1
	b.	Analyze how anonymous signatures enhance transaction	10M	L4	CO1
		privacy in blockchain with examples.			
	1			1	· · · · · · · · · · · · · · · · · · ·
13.	a.	Construct and demonstrate a simple consensus algorithm. i) Simulate Proof of Work (PoW) or Proof of Stake (PoS). ii) Validate the chain by achieving consensus among multiple nodes.	10M	L6	C01
	b.	Create a program to generate a Bitcoin address and validate its checksum.	10M	L6	CO2
		0r			
14.	a.	Create a program to Simulate and Detect Vulnerabilities in Blockchain Client Interactions. i) Create scenarios for potential attacks like phishing or keyloggers. ii) Demonstrate secure key management techniques.	10M	L6	C01
	b.	To implement a simple demonstration of inter-exchange address format validation using Protocol (IXCAP).	10M	L6	CO2
45	I		103/		
15.	a.	Explain the different types of cryptographic techniques and their applications. Describe the role of cryptographic hash functions in securing digital data.	10M	L	CO2
	b.	Explain the working of Public Key Cryptography with an example. Describe the process of key generation and management in Public Key Cryptography.	10M	L2	CO2
		Or			
16.	a.	How does digital signature work in blockchain? Explain its importance in cryptographic security.	10M	L1	CO2
	b.	Explain the principles of Elliptic Curve Cryptography (ECC) and its advantages over RSA.	10M	L2	CO2
17.	a.	Explain the UTXO transaction model with an example. Discuss its benefits and limitations.	10M	L2	CO3
	b.	Interpret the CAP theorem and analyse its applicability to blockchain systems with real-world examples.	10M	L5	CO3
	1	Or	<u>I</u>	1	1
18.	a.	Analyse the scalability challenges in both UTXO and Account-Based models. What are the proposed solutions to overcome these issues?	10M	L4	CO3
	b.	Explain how privacy-enhancing technologies like zk-SNARKs and ring signatures are integrated into blockchain. Discuss their impact on transaction confidentiality.	10M	L2	CO3