Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOCSE	Program: B. Tech - IST			
Course Code :CSE3347	Course Name: Optimization Techniques for ML			
Semester: VI	Max Marks:100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4
Marks	24	24	26	26

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	List the types of clustering.	2 Marks	L1	CO1
2.	How to evaluate unsupervised learning models?	2 Marks	L1	CO1
3.	Write down the challenges of sparse regression.	2 Marks	L1	CO2
4.	What is a loss function?	2 Marks	L1	CO2
5.	Define convex composite optimization.	2 Marks	L1	CO3
6.	Write an equation for the Proximal Linear Method (PLM).	2 Marks	L1	CO3
7.	List the applications of SOCO.	2 Marks	L1	CO3
8.	How does gradient descent work?	2 Marks	L1	CO4
9.	Compare the features of the IPMS and Simplex methods.	2 Marks	L2	CO4
10.	When is the active set method used?	2 Marks	L1	CO4

Part B

		Answer the Questions.	Total Marks 80M				
11.	a.	Experiment with both linear (e.g., PCA, LDA) and nonlinear (e.g., t-SNE, UMAP, Autoencoders) dimensionality reduction techniques on a high-dimensional dataset to compare their effectiveness in preserving data structure.	20 Marks	L3	CO 1		
	1	Or					
12.	a.	Construct an example of a hypothesis class and demonstrate how to determine its VC dimension, then explain its implications for PAC learnability and model selection.	20 Marks	L3	CO 1		
13.	a.	Build a sparse principal component analysis (Sparse PCA) model by applying the mathematical formulation and algorithm, and demonstrate its use in genomics data analysis	20 Marks	L3	CO 2		
	1	Or		ı	1		
14.	a.	Construct a multiple kernel learning model using an appropriate approach (fixed linear combination or optimization-based), and explain how it can be applied to solve a real-world classification problem	20 Marks	L3	CO 2		
15.	a.	Develop a solution approach for a convex quadratic optimization problem by applying appropriate optimization techniques, and explain how the convexity of the problem ensures a global minimum.	20 Marks	L3	3		
	1	Or		ı	1		
16.	a.	Apply second-order cone optimization techniques to solve a real-world problem (portfolio optimization, robust regression, or facility location)	20 Marks	L3	CO 3		
17.	a.	Construct an algorithm using Nesterov's Accelerated Gradient method for optimizing a smooth convex function, and explain how it improves over standard gradient descent in terms of convergence rate.	20 Marks	L3	CO 4		
	I	Or		ı			
18.	a.	Model the steps of a basic interior point method for solving a linear programming problem, and demonstrate how it differs in approach and efficiency from the simplex method.	20 Marks	L3	СО		