	1	ţ	1		1	1	l	}			()	!
(/ -)	i i	- 1	1	-	1	1	1	į.			1 1	1
Holl No. 1		l										
	1	1	1	1	ŧ	1	1	ì	•			
	1 1	!		ì	1	ì	l		ł	ĺ	1 1	1
	h					L						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Sem & AY: Odd Sem. 2019-20

Course Code: MEC 321

Course Name: THEORY OF ELASTICITY

Program & Sem: B.Tech.(MEC) & VII DE

Instructions: All questions are compulsory

Date: 27.09.2019

Time: 9:30AM to 10:30AM

Max Marks: 40

Weightage: 20%

Part A [Memory Recall Questions]

Answer both the Questions. Each question carries ten marks.

(2Qx10M=20M)

1. Derive the equations of equilibrium for shear stress on a plane element in two planes xy and yz. [5+5M]

(C.O.NO.1) [Knowledge]

2. Derive the strain components acting on the planar element at an angle α from the horizontal surface. [10M]

(C.O.NO.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the sub Questions. Each sub question carries two marks. (5Qx2M=10M)

3. Fill in the following blanks

[10M]

(C.O.NO.1) [Knowledge]

- a. In a given multi-boundary problem, if the value of stress function phi(x,y)=0 in one boundary, its value in other boundaries_____.
- b. The maximum shear stress plane (angle measured w.r.t principal axes) has one of the direction cosines equal to______
- c. If at a point ex= 400, ey=200, ez=100, yyz= 50, yzx=yxy=0, then _____ is principal strain.
- d. The pricipal stresses at a poinnt are 8MPa, -2MPa, and 5MPa. The normal and shear stress on an oblique plane having l=m= 0.707 are respectively_____.

e. If s1=s2=s3 = 10N/mm2, the normal and shear stress on any oblique plane will be respectively_____.

Part C [Problem Solving Questions]

Answer the Question. The Question carries ten marks.

(1Qx10M=10M)

5. Draw the Mohr circle and illustrate the equations of stress both graphically and symbolically. Will the equation remains valid when the element has acceleration and why?

(C.O.NO.1) [Knowledge]

SCHOOL OF ENGINEERING

Semester: 7

Course Code: MEC321

Course Name: Theory of Elasticity

Date: 27/9/2019

Time: 9:30-10:30

Max Marks: 40

Weightage: 20

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	type irks al	recall lotted] Levels	prov [Mai	rks al	g type lotted]	blem S type arks all A		Total Marks
Q1.				10	K						10
Q2.	1	[:		10	K						10
Q3	1	1					5	K			5
Q4							5	K			5
Q5									10	K	10
	Total Marks										40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

{I hereby with certify that all the questions are set as per the above guidelines. Ms. Nikhat}

Reviewer's Comments,

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Semester: 7

Course Code: MEC 321

Course Name: THEORY OF ELASTICITY

Date:27/9/2019

Time: 9:30-10:30

Max Marks:40

Weightage: 20

Part A

 $(2Q \times 10M = 20 \text{ Marks})$

Q	·	Ma
N	Solution Sche	x. Ti
0	me of Mar king	me rec uir d
		for eac
		h
		Qι
		est
		on

intersections with the circle give ϵ_1 , ϵ_2 . The angle 2ϕ is the angle of FA below this axis.

13. Differential Equations of Equilibrium. We now consider the equilibrium of a small rectangular block of edges h, k, and unity (Fig. 19). The stresses acting on the faces 1, 2, 3, 4, and their positive directions are indicated in the figure. On account of the variation of stress

throughout the material, the value of, for instance, σ_x is not quite the same for face 1 as for face 3. The symbols σ_x , σ_y , τ_{xy} refer to the point x, y, the mid-point of the rectangle in Fig. 19. The values at the mid-points of the faces are denoted by $(\sigma_x)_1$, $(\sigma_x)_3$, etc. Since the faces are very small, the corresponding forces are obtained by multiplying these values by the areas of the faces on which they act.

The body force on the block, which was neglected as a small quantity of higher order in considering the equilibrium of the triangular prism of Fig. 12, must be taken into consideration, because it is of the same order of magnitude as the terms due to the variations of the stress components which are now under consideration. If X, Y denote the components of body force per unit volume, the equation of equilibrium for forces in the x-direction is

$$(\sigma_x)_1 k - (\sigma_x)_3 k + (\tau_{xy})_2 h - (\tau_{xy})_4 h + Xhk = 0$$

or, dividing by hk,

$$\frac{(\sigma_x)_1 - (\sigma_x)_3}{h} + \frac{(\tau_{xy})_2 - (\tau_{xy})_4}{k} + X = 0$$

If now the block is taken smaller and smaller, i.e., $h \to 0$, $k \to 0$, the limit of $[(\sigma_x)_1 - (\sigma_x)_3]/h$ is $\partial \sigma_x/\partial x$ by the definition of such a derivative. Similarly $[(\tau_{xy})_2 - (\tau_{xy})_4]/k$ becomes $\partial \tau_{xy}/\partial y$. The equation of equilibrium for forces in the y-direction is obtained in the same manner. Thus

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0$$

$$\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + Y = 0$$
(18)

In practical applications the weight of the body is usually the only body force. Then, taking the y-axis downward and denoting by ρ the mass per unit volume of the body, Eqs. (18) become

point are known, the unit elongation for any direction, and the decrease of a right angle—the shearing strain—of any orientation at the point can be found. A line element PQ (Fig. 17a) between the points (x,y), (x + dx, y + dy) is translated, stretched (or contracted) and rotated into the line element P'Q' when the deformation occurs. The dis-

placement components of P are u, v, and those of Q are

$$u + \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy, \qquad v + \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

If P'Q' in Fig. 17a is now translated so that P' is brought back to P, it is in the position PQ'' of Fig. 17b, and QR, RQ'' represent the components of the displacement of Q relative to P. Thus

$$QR = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy, \qquad RQ'' = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} \partial y \qquad (a)$$

The components of this relative displacement QS, SQ'', normal to PQ'' and along PQ'', can be found from these as

$$QS = -QR \sin \theta + RQ'' \cos \theta$$
, $SQ'' = QR \cos \theta + RQ'' \sin \theta$ (b) ignoring the small angle QPS in comparison with θ . Since the short line QS may be identified with an arc of a circle with center P , SQ''

ignoring the small angle QPS in comparison with θ . Since the short line QS may be identified with an arc of a circle with center P, SQ''

gives the stretch of PQ. The unit elongation of P'Q', denoted by ϵ_{θ} , is SQ''/PQ. Using (b) and (a) we have

$$\epsilon_{\theta} = \cos \theta \left(\frac{\partial u}{\partial x} \frac{dx}{ds} + \frac{\partial u}{\partial y} \frac{dy}{ds} \right) + \sin \theta \left(\frac{\partial v}{\partial x} \frac{dx}{ds} + \frac{\partial v}{\partial y} \frac{dy}{ds} \right)$$
$$= \frac{\partial u}{\partial x} \cos^{2} \theta + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \sin \theta \cos \theta + \frac{\partial v}{\partial y} \sin^{2} \theta$$

or

$$\epsilon_{\theta} = \epsilon_{x} \cos^{2} \theta + \gamma_{xy} \sin \theta \cos \theta + \epsilon_{y} \sin^{2} \theta$$
 (c)

which gives the unit elongation for any direction θ .

The angle ψ_{θ} through which PQ is rotated is QS/PQ. Thus from (b) and (a),

$$\psi_{\bullet} = -\sin\theta \left(\frac{\partial u}{\partial x} \frac{dx}{d\hat{s}} + \frac{\partial u}{\partial y} \frac{dy}{d\hat{s}} \right) + \cos\theta \left(\frac{\partial v}{\partial x} \frac{dx}{d\hat{s}} + \frac{\partial v}{\partial y} \frac{dy}{d\hat{s}} \right)$$

or

$$\psi_{\theta} = \frac{\partial v}{\partial x} \cos^2 \theta + \left(\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}\right) \sin \theta \cos \theta - \frac{\partial u}{\partial y} \sin^2 \theta \qquad (d)$$

rait D(SQ X ZIVI - TUIVIATKS)

Q No	Solution	Sch eme of Ma rkin	Max. Time requir ed for each Questi on
Q3.	 a. in a given multi-boundary problem, if the value of stress function phi(x,y)=0 in one boundary, its value in other boundarieswill have non-zero values b. c. 2. the maximum shear stress plane(angle measured w.r.t principal axes) has one of the direction cosines equal to0 d. 3. if at a point ex= 400, ey=200, ez=100, yyz= 50, yzx=yxy=0, theney is principal strain e. 4. the pricipal stresses at a poinnt are 8MPa, -2MPa, and 5MPa. the normal and shear stress on an oblique plane having l=m= 0.707 are respectively3MPa, 7MPa f. 5. if s1=s2=s3 = 10N/mm2, the normal and shear stress on any oblique plane will be respectively 10N/mm2, 0 	2*5 =10	5
			5

Part C

 $(Q1 \times 10M = 10Marks)$

Q No		Sche	Max.
	Solution	me of	Time
		Mark	required
			for each
		ing	Ouestion

A diagram, such as shown in Fig. 13, can be used also for determin

principal stresses if the stress components σ_x , σ_y , τ_{xy} for any two perpendicular planes (Fig. 12) are known. We begin in such a case with the plotting of the two points D and D_1 , representing stress conditions on the two coordinate planes (Fig. 16). In this manner the diameter DD_1 of the circle is obtained. Constructing the circle, the principal stresses σ_1 and σ_2 are obtained from the intersection of

the circle with the abscissa axis. From the figure we find

$$\sigma_1 = OC + CD = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma_2 = OC - CD = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

The maximum shearing stress is given by the radius of the circle,

$$\tau_{\text{max}} = \frac{1}{2} \left(\sigma_1 - \sigma_2 \right) = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}$$

In this manner all necessary features of the stress distribution point can be obtained if only the three stress components σ_x , σ_y , τ_{xi}

· · · · · · · · · · · · · · · · · · ·									
Roll No.		-							
								}	
	L		 L	L	 ž	 L	L	L	L

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

TEST - 2

Sem & AY: Odd Sem 2019-20

Course Code: MEC 321

Course Name: THEORY OF ELASTICITY
Program & Sem: B.Tech (MEC) & VII (DE)

Date: 16.11.2019

Time: 9.30 AM to 10.30 AM

Max Marks: 40 Weightage: 20%

Instructions:

(i) All the questions are compulsory.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries six marks.

(3Qx6N=18NI)

1. State and explain Saint Venant's Principle

(C.O.NO.1) [Knowledge]

2. State and explain Compatibility conditions.

(C.O.NO.1) [Comprehension]

3. State and explain stress function with an example.

(C.O.NO.1) [Comprehension]

Part B [Thought Provoking Questions]

Answer the Question. The Question carry ten marks.

(1Qx10M=10M)

4. Derive the equilibrium equation in Cartesian co-ordinates from the fundamentals for 2-Dimensions taking into consideration of body forces.

(C.O.NO.2) [Application]

Part C [Problem Solving Questions]

Answer the Question. The Question carry twelve marks.

(1Qx12M=12M)

5. Derive the expressions for stresses for the case of pure bending of a curved bar stating all necessary boundary conditions. (C.O.NO.2) [Application]

SCHOOL OF ENGINEERING

Sem AY: Odd Sem 2019-20

Course Code: MEC 321

Course Name: Theory of Elasticity

Program & Sem: B.Tech (Mech) & VII DE

Date: 16/11/2019

Time: 1.00hr

Max Marks: 40

Weightage: 20%

Extract of question distribution [outcome wise & level wise]

Q.NO	C.O.NO	Unit/Module Number/Unit /Module Title	[Ma	mory recall type rks allotted] om's Levels	prov [Mar	ed]		olem Solving type rks allotted]	Total Marks
1	CO1	4	06						06
2	CO1	3	06					-	06
3	CO1	4			06				06
4	CO2	3					10		10
5	CO2	470700			*****		12		12
	Total Marks	Niggiyin	12		06		22	¥,	40

K =Knowledge Level C = Comprehension Level, A = Application Level

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

Annexure- II: Format of Answer Scheme

SCHOOL OF ENGINEERING

SOLUTION

Sem AY: Odd Sem 2019-20

Course Code: MEC-321

Course Name:Theory of Elasticity Program & Sem: B.Tech (Mech) & VII Date: 16/11/2019

Time: 1.00 hr

Max Marks: 40

Weightage: 20%

Part A

 $(3Q \times 6M = 18Marks)$

	latta	(3 4 11 32 12 12 12 12 12 12 12 12 12 12 12 12 12	
Q N o	Solution	Scheme of Marking	Max. Time require d for each Questio
1	Statement of Saint Venant's Principle	03M	
	Explanation	03M	
ŀ			08 Min
2	• Strain compatibility equations in 3D space are; $\frac{\partial^{2} \gamma_{yy}}{\partial x \partial y} = \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{y}}{\partial y^{2}} = \begin{bmatrix} \frac{\partial^{2} \varepsilon_{y}}{\partial y \partial z} & \frac{\partial^{2} \varepsilon_{y}}{\partial x} & \frac{\partial^{2} \varepsilon_{y}}{\partial x} & \frac{\partial^{2} \varepsilon_{y}}{\partial z} \\ \frac{\partial^{2} \gamma_{yz}}{\partial y \partial z} & \frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}} & \frac{\partial^{2} \varepsilon_{z}}{\partial y^{2}} \end{bmatrix} = \begin{bmatrix} \frac{\partial^{2} \varepsilon_{y}}{\partial x \partial z} & \frac{\partial^{2} \varepsilon_{y}}{\partial x} & \frac{\partial^{2} \varepsilon_{y}}{\partial x} & \frac{\partial^{2} \varepsilon_{y}}{\partial x} & \frac{\partial^{2} \varepsilon_{y}}{\partial x} & \frac{\partial^{2} \varepsilon_{y}}{\partial z} \end{bmatrix}$ $= \begin{bmatrix} \frac{\partial^{2} \gamma_{yz}}{\partial x \partial z} & \frac{\partial^{2} \varepsilon_{y}}{\partial x} & \frac{\partial^{2} \varepsilon_{y}}{\partial z} & \frac{\partial^{2} \varepsilon_{y}}{\partial z} & \frac{\partial^{2} \varepsilon_{y}}{\partial z} & \frac{\partial^{2} \varepsilon_{y}}{\partial z} \end{bmatrix}$ $= \begin{bmatrix} \frac{\partial^{2} \gamma_{yz}}{\partial x \partial z} & \frac{\partial^{2} \varepsilon_{y}}{\partial x} & \frac{\partial^{2} \varepsilon_{y}}{\partial z} $	Explanation with equations=06M	08 Min
3	Definition of stress function	02M 04M	1111
	Explanation with an example	U4IVI	0 8Min

					A CONTRACTOR
				1	
	1 1			: : : k	1 1 1 1 1 1 1 1 1
	1 1			:1	
	1 1		1	1	
			1	1	
				1	
					1 1:5
					1 1 1 1
	1			1	
	1 1			i	
	1				1 11 1
					4 14 1
			†	1	1 71
				ì	
				• [4 1 1 1 1 1
	1 1				一点人 医二基基金
	1			į	
	1			i i	1 1 1 1 1 1 1
	1 1			į.	. 11.
					一门 "我一定我没一样
					4 4 1 7
					- 1 4 4 1 4 1
		14 - 1	1		
	1 1	· · · · · · · · · · · · · · · · · · ·			1 1 1 1 1
,我们就是一个大大的,我们就会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会			 		

Part B

 $(1Q \times 10M = 10Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
4	$\begin{pmatrix} x \\ y \\ (\sigma_{xy})_3 \end{pmatrix} \begin{pmatrix} (\sigma_y)_4 \\ h \\ 4 \\ (\sigma_x)_3 \end{pmatrix} \begin{pmatrix} (\sigma_x)_1 \\ k \\ 2 \\ (\sigma_x)_2 \end{pmatrix} \begin{pmatrix} (\sigma_x)_1 \\ (\sigma_x)_2 \end{pmatrix}$	Fig =04M,	
	$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0$ $\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + Y = 0$	Derivation =06M	18 Min

(1Q x 12 M = 12Marks)

Q No	Solution	Scheme of Marking	Max. Time required for each Question
5	Neat figure with details of loading	04M	
	Stating necessary boundary conditions	02M	
	Deriving expressions for σ_r , σ_θ and	06M	
	$ au_{ ext{r} heta}$		
- COAC-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T			18 Min

Roll No							

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Semester: Odd Semester: 2019 - 20

Course Code: MEC 321

Course Name: THEORY OF ELASTICITY

Program & Sem: B.Tech (MEC) & VII (DE-III)

Date: 20 December 2019

Time: 9:30 AM to 12:30 PM

Max Marks: 80

Weightage: 40%

Instructions:

(i) Read the all questions carefully and answer accordingly.

Part A [Memory Recall Questions]

Answer all the Questions. Each Question carries 2 marks.	(10Qx2M=20M)
1. Define plane strain.	(C.O.No.1) [Knowledge]
2. What are elastic constants briefly explain.	(C.O.No.1) [Knowledge]
3. State Saint Venant's principle.	(C.O.No.2) [Knowledge]
4. Significance of Biharmonic equation.	(C.O.No.2) [Knowledge]
5. State the equations of equilibrium in three dimensions.	(C.O.No.2) [Knowledge]
6. Briefly explain what you mean compatibility condition.	(C.O.No.2) [Knowledge]
7. Define stress Invariants.	(C.O.No.2) [Knowledge]
8. Define strain at point.	(C.O.No.2) [Knowledge]
9. Briefly explain "Torsion formula".	(C.O.No.3) [Knowledge]
10. Briefly explain Polar moment of Inertia of shaft.	(C.O.No.3) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions.

(4Q=30M)

- 11. Explain generalized Hooke's law. Giving equations. [7M]
- [7M] (C.O.No.1) [Comprehension]
- 12. State and explain compatibility conditions
- [7M] (C.O.No.2) [Comprehension]
- 13. Write notes on: 1) Torsional rigidity and Torsional strength giving equations.

[8M] (C.O.No.3) [Comprehension]

14. Derive σ_x , σ_y and τ_{xy} for rectangular beam in Cartesian coordinates using 4th order Polynomial. [8M] (C.O.No.2) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each Question carries 10 marks.

(3Qx10M=30M)

15.
$$\sigma_{ij} = \begin{bmatrix} 18 & 24 & 0 \\ 24 & 32 & 0 \\ 0 & 0 & -20 \end{bmatrix} MPa$$

Determine a) The Principal Invariants of σ b) Principal stresses and value maximum shear stress (C.O.No.2) [Application]

- 16. A hollow circular shaft 200mm external diameter and metal thickness 25 mm is transmitting power at 200 rpm. The angle of twist over a length of 2 m was found to be 0.5 degrees. Calculate the power transmitted and the maximum shear stress induced in the section. Take modulus of rigidity of the material as 84 kN/mm². (C.O.No.3) [Application]
- 17. The uniformly tapering shaft as shown in the Fig.1 below is subjected to a torque of 2kN-m at its free end. Find the angle of twist and maximum shear stress in the shaft if G= 80 kN/mm². What is the percentage error if is calculated as a shaft of average diameter.

(C.O.No.3) [Application]

Fig. 1

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

Extract of question distribution [outcome wise & level wise]

Q.NO.	C.O.NO		Memory recall type	Thought provoking type	Problem Solving	Total
	(% age of	Unit/Module	[Marks allotted]	[Marks allotted]	type	Marks
	CO)	Number/Uni t	Bloom's Levels	Bloom's Levels	[Marks allotted]	
		/Module Title	K	С	А	
PART A	CO 01	All the 5	20			20
	CO 02	modules				
Q. NO1 TO 10	CO 03					
PART B	CO 01	MODULE		7		7
Q.NO.11		01				
		Per Unit System				
PART B	CO 02	MODULE		7		7
Q.NO.12		03				
d		Load Flow Studies				
PART B	CO 03	MODULE		8		8
Q.NO.13		05				
		Load Flow Studies				
PART B Q.NO.14	CO 02	MODULE 02		8		8
		Fault				

		Analysis				
PART C	CO 02	MODULE			10	10
Q.NO.15		04				
		Stability				
		studies				
PARTC	CO 03	MODULE			10	10
Q.NO.16		02				
		Load Flow				
		Studies				
PARTC	CO 03	MODULE			10	10
Q.NO.17		03				
		Fault				
		Analysis				
	Total Marl	KS	20	30	30	80

K = Knowledge Level C = Comprehension Level, A = Application Level

C.O WISE MARKS DISTRIBUTION:

CO 01: 10 MARKS, CO 02: 26 MARKS, CO 03: 27 MARKS, CO 04:17 MARKS

Note: While setting all types of questions the general guideline is that about 60%

Of the questions must be such that even a below average students must be able to attempt, About 20% of the questions must be such that only above average students must

be able to attempt and finally 20% of the questions must be such that only the bright students must be able to attempt.

I hereby certify that all the questions are set as per the above guidelines.

Faculty Signature:

Reviewer Commend:

SCHOOL OF ENGINEERING

END TERM FINAL EXAMINATION

SOLUTION & SCHEME

Sem AY: Odd Sem 2019-20

Course Code: MEC-321

Course Name:Theory of Elasticity Program & Sem: B.Tech (Mech) & 5th Date: 20/12/2019

Time: 9.30AM TO 12.30PM

Max Marks: 80

Weightage: 40%

Instructions:

Read the all questions carefully and answer accordingly

Part A

 $(10Q \times 2M = 20Marks)$

Q No	Solution	Scheme of Marking	Max. Time require d for each Questio
1	Definition of plane strain	02	1.000
2	E, G,K and brief explanation	02	
3	Statement of Saint Venants principle	02	
4	Significance of bi harmonic equation	02	
5	3 Equilibrium Equations in X,Y & Z directions	02	50 min
6	Brief Explanation regarding compatibility conditions	02	
7	Definitions of I ₁ , I ₂ & I ₃	02	
8	Definition of strain at a point	02	
9	Torsion formula T/J=Gθ/L=fs/r	02	
10	Define polar moment of Inertia	02	

Part B

 $(2Q \times 7M + 2Q \times 8M = 30Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
11	Hooke's law in 2 Dimensions and 3 Dimensions giving matrix equation taking in to considerations of [D] Matrix, also state the effects isotropy	2D & 3D Equations(03M)+Generalized Hooke's law with [D] Matrix[03M]+stating the effect of the isotropy[01M]	20
12	Strain compatibility equations in 3D space are; $ \frac{\partial^{2} \gamma_{yy}}{\partial x \partial y} - \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} + \frac{\partial^{3} \varepsilon_{x}}{\partial y^{2}} = 2\frac{\partial^{3} \varepsilon_{x}}{\partial y \partial z} - \frac{\partial^{3} \psi_{y}}{\partial z} + \frac{\partial^{3} \psi_{y}}{\partial z} = 2\frac{\partial^{3} \psi_{y}}{\partial z} - \frac{\partial^{2} \psi_{y}}{\partial z} - \frac{\partial^{2} \psi_{y}}{\partial z} - \frac{\partial^{2} \psi_{y}}{\partial z} - \frac{\partial^{2} \psi_{y}}{\partial z} - \frac{\partial^{3} \psi_{y}}{\partial z} = 2\frac{\partial^{3} \varepsilon_{y}}{\partial z} - \frac{\partial^{3} \psi_{y}}{\partial $	Explanation with equations=07M	20
13	Torsional Rigidity Explannation with Equation Torsional strenght Explannation with Equation	Explanation with equation $G\theta = TL/J$ (04M) Explanation with equation $T/J = fs/R$ (04M)	20

14	Derivation of σ_x	Choosing appropriate 4 th order
	Derivation of σ_v and τ_{xy}	polynomial (02M)
		Stating boundry conditions
		(01M)
		Derivation of σ_x (02M)
		Derivation of σ_{y} and τ_{xy} (03M)

Part C

 $(3Q \times 10 M = 30 Marks)$

Q No	Solution	Scheme of Marking	Max. Time required for each Question
15	Determination of Principal Invariants of σ	I1=30MPa, I2 = 1000MPa, I3 = 0 MPa (03M)	20
	Determination of principal stresses	σ_1 =50MPa, σ_2 = 0MPa σ_3 = -20MPa (03M)	20
	Determination of maximum shear stress	τ _{max} = 35 MPa	
16	Determination of Power transmitted	Formula (01M)	30
	Determination of maximum shear stress induced	P = 824.27 kW (04M) Formula (01M)	
		$q_s = 36.652 \text{ N/mm}^2 (04\text{M})$	

17	Determination of angle of twist	Formula (01M)	20
		$\theta = 0.0580 \text{ radians} (04M)$	
	Determination of maximum shear stress	Formula (01M)	
	Determination of %error	$\tau_{\text{max}} = 565.88 \text{MPa } (02 \text{M})$	
		%error = 32.25 (02M)	
			The same of the sa