pRoll						
No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

School: SOEProgram: B.Tech.-PETCourse Code: PET2024Course Name: Wellbore Problems and MitigationSemester: IVMax Marks: 100Weightage: 50%

CO - Levels	CO1	CO2	СО3	CO4	CO5
Marks	00	30	20	50	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

	•		•	
1.	Define "Blind Drilling" and mention one recommendation to do so.	2 Marks	L1	CO2
2.	Distuinguish between "Seepage" and "Partial" Loss circulation.	2 Marks	L1	CO2
3.	The figure shows four typical pit level versus time responses observed during a formation evaluation test. Match the following formation characteristics with their corresponding graph patterns:	2 Marks	L1	CO2
	a) Pores/Perm Matrix b) Natural Fractures c) Induced Fracture d) Cavernous			
	Graph Patterns:			

	i) Gradual upward curve ii) Multiple step-like increases iii) Two distinct sharp increases iv) Sharp rapid increase near the beginning			
	Pit level—— Time A B Pit level—— B			
	Pit level — Pit level — Time C D			
4.	Name some of the Fiber and Granular LCM materials.	2 Marks	L1	CO2
5.	State the any two consequences of Loss circulation while drilling.	2 Marks	L1	CO2
6.	State any two consequence of Blowout.	2 Marks	L1	CO4
7.	Identify the appropriate options.	2 Marks	L1	CO4
	I. The primary function of is to strengthen the wellbore walls and prevent fluid loss into permeable formations.			
	(A) Casing / (B) Cement slurry / (C) Drilling mud / (D) Liner hanger			
	II is a type of well control incident where formation fluids enter the wellbore due to lower hydrostatic pressure.			
	(A) Blowout / (B) Kick / (C) Mud loss / (D) Fracture gradient			
	III. The is a downhole tool used to direct drilling fluid flow and provide rotational force to the drill bit without rotating the drill string.			
	(A) Rotary table / (B) Mud motor / (C) Annular preventer / (D) Choke line			
	IV. The is a set of heavy steel pipes placed in the hole to provide weight and stability to the drill bit and bottomhole assembly.			
	(A) Drill collar / (B) Kelly / (C) Drill pipe / (D) Stabilizer			
8.	Identify True/False type questions on Well Control:	2 Marks	L1	CO4
	I. The primary function of a Blowout Preventer (BOP) system is to prevent uncontrolled flow of formation fluids during drilling operations.			

	seal when the d III. The kill manifol kill operation by IV. Choke manifold	P can only seal around the drill pipe and crill pipe is absent from the wellbore. d is used to control the flow of fluids during introducing heavier mud into the wellbores are designed to regulate the flow of drilling and well control situations by maintaining wellbore.	a well e. g mud			
9.	Match the following:			2 Marks	L1	CO4
	Column A (BOP Type)	Column B (Function/Application)				
	A. Annular BOP	Used for sealing the wellbore by compressing a rubber sealing element around the drill pipe.				
	B. Ram BOP (Pipe Rams)	2. Used to seal the wellbore in case of a kick, by closing around a specific diameter of the pipe.				
	C. Blind Ram BOP	3. Used to seal off the wellbore in the absence of a drill pipe, providing a tight seal for well control.				
	D. Shear Ram BOP	4. Designed to cut through the drill pipe while simultaneously sealing the wellbore.				
10.	Name the two outlets of	of Drilling Spool and state their application/	,	2 Marks	L1	CO4

Part B

		Answer the Questions.	Total Ma	rks 80	M		
11.	Discu	uss the causes, types, and impacts of loss circulation during drilling	20	L2	CO2		
	oper	ations. Explain the formation characteristics that contribute to it,	Marks				
	and s	suggest effective mitigation and treatment strategies.					
	0r						
12.	Expla	ain the procedure for reporting and diagnosing mud circulation	20	L2	CO2		
	loss	during drilling. Describe how to identify the loss zone, the types	Marks				
	and o	causes of loss circulation, and discuss preventive measures and the					
	role	of different Loss Circulation Materials (LCMs) in managing it.					
13.	a.	Classify and explain primary and secondary kick indicators	14	L2	CO4		
		during drilling, with examples. Discuss how early detection aids	Marks				
		in timely well control and enhances operational safety.					
	b.	Distinguish between SRRA and RSRA configurations in a	06	L2	CO4		
		Blowout Preventer (BOP) system. Illustrate your answer with a	Marks				
		labeled diagram highlighting their structural and functional					
		differences.					
		0r					

14.	a.	Classify the types of Blowout Preventers (BOPs), focusing on	10	L2	CO4
14.	a.	Annular and Ram-type BOPs. Explain their functions and	Marks	LL	CO4
		discuss how their use depends on wellbore pressure and	Maiks		
		formation conditions.			
	b.		10	L2	CO4
	D.	Explain the pressure variations during a well killing operation.		LZ	C04
		Using a labeled diagram, illustrate key stages such as shut-in	Marks		
		pressure, kick tolerance, and circulation pressures. Discuss their			
		influence on decision-making and the effectiveness of the kill			
		method.			
15.	Case	Study:	20	L3	CO4
13.	Casc	Study.	Marks	LJ	COT
	Well	Control During a Kick at 11,500 ft in a 12.25" Hole	Maiks		
		ng drilling, a kick occurred at 11,500 ft. Shut-in pressures			
		rded: DPSIP = 300 psi, CSIP = 600 psi. The last casing (13.375", ID			
		15", set at 9,000 ft) and the bottom-hole assembly (6.5" OD drill			
		rs, 400 ft) were in place. Drillpipe specs: 5.5" OD, 4.276" ID. Mud			
		ht: 9.5 ppg (0.494 psi/ft). Circulation pressures: 2,200 psi @ 50			
	_	800 psi @ 25 spm. Pump output: 0.12 bbl/stroke.			
	Spin,	ooo psi & 25 spin. i ump output. 0.12 bbi/stroke.			
	i.	Compute internal capacities of drillpipe and drill collars			
		(bbl/ft).			
	ii.	Calculate annular capacity between drillpipe and open hole			
		(bbl/ft).			
	iii.	Estimate formation pressure at kick depth.			
	iv.	Determine required kill mud weight.			
	v.	Compute Initial Circulating Pressure (ICP).			
	vi.	Compute Final Circulating Pressure (FCP).			
	vii.	Estimate time to displace kill mud through drillpipe.			
	viii.	Estimate total time to replace well volume with kill mud.			
	ix.	Calculate total pump strokes required for kill operation.			
	x.	Provide a graph showing drillpipe pressure vs. time and strokes			
		during the kill process.			
		Or			
16.	Case	Study: <i>Kick Encounter at 10,000 ft in an 8.5" Hole</i> While drilling	20	L3	CO4
		5" hole at 10,000 ft, a kick occurred and the well was shut in.	Marks		
		rded pressures:	1-141110		
	reco	rucu pressuresi			
	DPSI	P = 200 psi,			
	CSIP=	=400 psi.			
	Casin	ng: 9.625" (ID 8.755"), set at 8,600 ft. Drill collars: 8" OD, 3" ID, 500			
	ft.	ig. 5.025 (1D 6.755), set at 6,000 It. DI III COHAFS: 8 UD, 3 ID, 500			
	11.				

pro	rillpipe: 5" OD, 4.276" ID. Mud weight: 10.0 ppg (75 pcf). Circulation ressures: 2,000 psi @ 60 spm, 500 psi @ 30 spm. Pump output: 0.1 ol/stroke.		
j	i. Compute internal capacities of drillpipe and drill collars		
	(bbl/ft).		
i	ii. Calculate annular capacity between drillstring and open hole		
	(bbl/ft).		
iii	ii. Estimate formation pressure at kick depth.		
iv	v. Determine required kill mud weight.		
V	v. Compute Initial Circulating Pressure (ICP).		
V	ri. Compute Final Circulating Pressure (FCP).		
vi	ii. Estimate time to displace kill mud through drillpipe.		
vii	ii. Estimate total time to circulate kill mud through wellbore.		
ix	x. Calculate total pump strokes for kill operation.		
У	x. Plot drillpipe pressure vs. time and strokes using calculated		
	values.		

17.	a.	Explain abnormal formation pressure and classify the key	10	L2	CO3
		geological and operational factors that contribute to its	Marks		
		occurrence. Explain the mechanisms behind its development			
		and assess its impact on drilling safety and well control			
		strategies.			
	b.	Explain how Measurement While Drilling (MWD), Repeat	10	L2	CO3
		Formation Tester (RFT), and Drill Stem Test (DST) assist in	Marks		
		detecting and evaluating abnormal pore pressures during			
		drilling operations. Describe the specific role of each technique			
		in pressure assessment.			
		0r			
18.	Desc	ribe the application of Measurement While Drilling (MWD),	20	L2	CO3
	Repe	at Formation Tester (RFT), and Drill Stem Test (DST) in	Marks		
	ident				
	comp	pare empirical, well logging, and seismic methods for detecting			
	abno	rmal pressures, citing examples of geological processes linked to			
	each	approach.			