Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

Date: 31-05-2025 **Time:** 01:00 pm – 04:00 pm

School: SOE	Program: B. Tech-EEE			
Course Code: EEE2030	Course Name: Electric Power Generation and Economics			
Semester: II	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	28	24	24	

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.	Recall the classification of Hydroelectric Power Plant Based on Availability of Water Flow	2 Marks	L1	CO1
2.	What is the importance of spillways in hydroelectric power plant?	2 Marks	L1	CO1
3.	List the material used for moderator and coolant in nuclear power plant	2 Marks	L1	CO2
4.	List the advantages of thermal power plant	2 Marks	L1	CO2
5.	Define the terms direct radiation and diffused radiation in solar system	2 Marks	L1	CO2
6.	What is the function of Economiser in thermal power plant?	2 Marks	L1	CO2
7.	Define the term maximum demand and demand factor.	2 Marks	L1	CO3
8.	How the average load is calculated for a day and for a month.	2 Marks	L1	CO3
9.	Define diversity factor and coincidence factor	2 Marks	L1	CO4
10.	What is block rate tariff and simple tariff	2 Marks	L1	CO4

Part B

Answer the Questions.

Total Marks 80M

	1	<u> </u>	1		
11.	a.	Electricity is the backbone of modern society. From powering	10 Marks	L2	CO1
		our homes, businesses, and industries to enabling			
		communication and transportation, electricity plays a vital role			
		in our daily lives. In brief explain the various power generation			
		methods in India			
	b.	A fuel cell power plant is a technology used in aviation	10 Marks	L2	CO1
		applications to provide improved performance and			
		environmental compatibility. With neat sketch explain the			
		working of fuel cell power plant.			
		Or			
12.	a.	Hydroelectricity is clean and cost effective, however it carries	10 Marks	L2	CO1
		safety risks. Explain various control and protective mechanisms			
		and safety measures adopted in hydroelectric power plants			
	b.	The benefits of hydropower have been recognized and	10 Marks	L2	CO1
	0.	harnessed for thousands of years. In addition to being a	10 141113	22	001
		renewable and cost-effective form of energy, hydropower plants			
		can provide power to the grid immediately, serving as a flexible			
		and reliable form of backup power during major electricity			
		outages or disruptions. With neat sketch explain the			
		layout/structure of hydroelectric power plants			
13.	a.	With neat sketch explain the layout/structure of Nuclear power	10 Marks	L2	CO2
13.	a.		10 Mai KS	LZ	COZ
	h	plants Site colorion for thornel necessary plants involves constilly	10 Maulta	L2	CO2
	b.	Site selection for thermal power plants involves carefully	10 Marks	LΖ	CU2
		considering various factors to ensure efficient operation and			
		minimize environmental and social impacts. Explain various			
		factors to be considered for selection of site for a thermal power			
		plant			
	ı	Or			
14.	a.	A wind power plant, also known as a wind farm or wind park,	10 Marks	L2	CO2
		is a collection of wind turbines that generate electricity from			
		the kinetic energy of the wind. Explain various parts of wind			
		power plant			
	b.	With neat sketch explain the construction and working of PV	10 Marks	L2	CO2
		cells			
	ı				
15.	a.	Explain the following terms with respect to electrical power	10 Marks	L2	CO3
		i) Plant capacity factor			
		ii) Plant Use Factor			
		iii) Utilization Factor			
		iv) Load curve			
		v) Load Duration curve			
		v) Loau Duration curve			

	b.	A power plant supplies	s the followi	ing loads to various	10 Marks	L3	CO3				
		consumers:									
		Industrial consumers =									
		Commercial establishe									
		Domestic power = 100									
		Domestic Light = 450 k									
		If the maximum demar	nd on the sta	ation is 2500 kW and the							
		number of kWh genera	ated/ year is	s 45×10 ⁵							
		Compute the diversity	annual load factor.								
Or											
16.	a.	Explain the concept of	load factor	and diversity factor and their	10 Marks	L2	CO4				
		effect on the cost of Ele	ectrical Ene	rgy.							
	1-	A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-14 - 1 1 - 1	10 M1 -	1.2	CO 4				
	b.		TMW capa	city is supplying a region with	10 Marks	L2	CO4				
		following demands.									
		From	To	Demand (kW)							
		midnight	5 am	Demand (kW) 100							
		5 am	6 pm	No-load							
		6 pm	7 pm	800							
		7 pm	9 pm	900							
		9 pm n									
		i) Construct th									
		ii) Compute the									
) F									
17.	a.	Explain the concept of l	Electrical po	ower tariff and also explain the	10 Marks	L2	CO4				
		various factors influen	cing the rate	e of tariff designing.							
		,	. 1	1 6 000 144 - 0504 1	40.14		20.4				
	b.	A consumer has a ma	10 Marks	L3	CO4						
		factor. If the tariff is R									
		15 paise per kWh, solv									
		<u>I</u>		0r		I	l				
18.	a.	Explain the different ty	fs in practice	10 Marks	L2	CO4					
				_							
	b.	A power plant supplies	10 Marks	L3	CO4						
		consumers:									
		Industrial consumers =									
		Commercial establishe									
		Domestic power = 100									
		Domestic Light = 450 l									
				ation is 2500 kW and the							
		number of kWh genera									
		Compute the div	ersity factor	r and annual load factor.							
		l									