Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE	Program: B. Tech (PET)				
Course Code: PET2011	Course Name: Oil and Gas Downstream Operations				
Semester: VI	Max Marks: 100 Weightage: 50%				

CO - Levels	CO1	CO2	СО3	CO4	CO5
Marks	20	20	30	30	N.A.

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

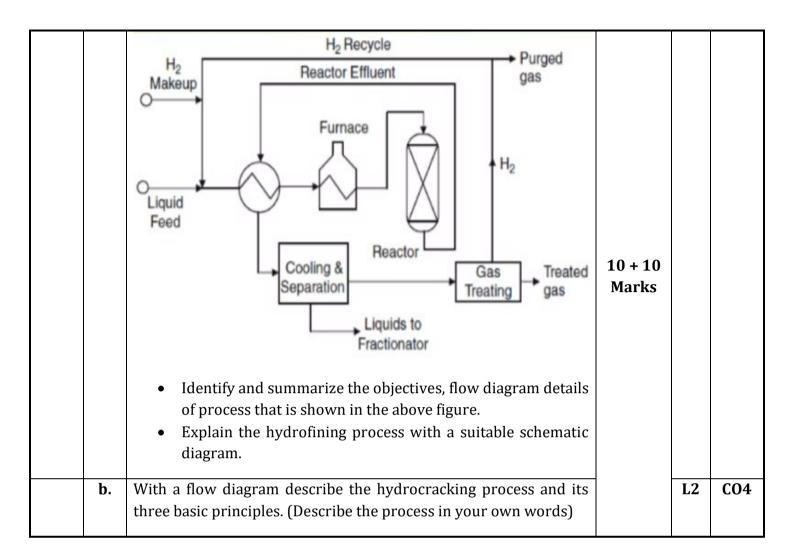
Answer ALL the Questions. Each question carries 2 marks.

10Q x 2M=20M

AllSW	ver ALL the Questions. Each question carries 2 marks.	10Q X 2M-20M			
1.	Recall the importance of shock or shield section in pipe still heater.	2 Marks	L1	CO3	
2.	Select the correct answer from the following options:	2 Marks	L1	CO3	
	The distillation process in a petroleum refinery is a-				
	A) Physical separation process not a chemical process				
	B) Chemical separation process not a physical process				
	C) Both, physical and chemical process				
	D) None of the above				
3.	Recognize the correct answer:	2 Marks	L1	CO3	
	Height of the vacuum distillation column for an industrial-scale				
	applications is generally maintained up to about meter.				
	A) 75				
	B) 65				
	C) 55				
	D) 50				
	y				

4.	Generally packing material is used in a vacuum distillation column (VDU) rather than using of tray. State the importance of packing materials in VDU.	2 Marks	L1	CO3
5.	Identify the correct answer: Isomerization process is used to convert A) Naphthenes to Aromatics by removing H ₂ B) Aromatics to Naphthenes by removing H ₂ C) Straight chain alkanes to branched alkanes	2 Marks	L1	CO3
6.	D) Branched alkanes to straight chain alkanes State three differences between coil vis-breaking and soaker vis- breaking process.	2 Marks	L1	CO4
7.	Imagine you are a petroleum engineer working in the catalytic cracking (CC) section of a refinery. You are using an alumina supported cobalt-molybdenum (Co-Mo) catalyst for the cracking reaction. Typically, a fresh catalyst is expected to have a lifespan of 1 to 2 years. However, after just six months, you have noticed a decline in the production rate from the CC unit. Identify the likely reasons for this decline and discuss potential ways to address the challenges.	2 Marks	L1	C04
8.	Identify the correct answer from the options as given below: In the delayed coking process, the Coker drum temperature is to be maintained between- A) 450°C-480°C B) 470°C-500°C C) 510°C-540°C D) 480°C-510°C	2 Marks	L1	C04
9.	Reproduce the schematic diagram of coil type vis-breaking process and label all process equipment and flow directions. (No discussion is required)	2 Marks	L1	CO4
10.	Describe Flue gas and the compositions that come out from the Fluid catalytic cracking (FCC) unit.	2 Marks	L1	CO4

Part B


Answer	the Ouestions	_
Answer	me vuesuons	

Total Marks 80M

11.	a.	In crude oil "sulfur compounds are classified according to their		L2	CO1
		corrosive effects" one is the active sulfur compounds and	10 + 10		
		another one is inactive sulfur compounds. Explain in detail the	Marks		
		characteristics of active sulfur compounds in crude oil. Similarly,			

		describe the properties and significance of inactive sulfur compounds.			
	b.	Hydrocracking is a vital process in petroleum refining, aimed at converting heavy feedstocks into more valuable products. There are different configurations of hydrocracking units, namely: • Single-stage hydrocracking unit • Single-stage recycle hydrocracking unit • Two-stage hydrocracking unit With the help of suitable schematic flowcharts, discuss each of these configurations in detail.		L2	CO1
0r					
12.	b .	Gas cracking is an important industrial process used to produce lighter hydrocarbons from heavier feedstocks. Explain in detail the various steps involved in the gas cracking process, describing the sequence of operations from feed preparation to product recovery. Discuss the key process variables such as temperature, pressure, residence time, and type of feedstock, and explain how each variable influences the efficiency and outcome of the cracking process. Gas reforming is a fundamental chemical process widely used for the production of synthesis gas (syngas) and other valuable products. Discuss in detail the gas reforming process, clearly explaining the sequence of chemical reactions involved. Also explain its three benefits.	10 + 10 Marks	L2	CO1
13.	a.	Describe elaborately chemical compositions and physical		L2	CO2
_0.		properties of Diesel.	10 + 10		
	b.	Explain elaborately the specification and applications of poly vinyl chloride (PVC).	Marks	L2	CO2
		Or			
14.	a.	Explain industrial specifications and applications of high density poly ethylene (HDPE).	10 + 10	L2	CO2
	b.	With the help of suitable diagram discuss the vinyl chloride monomer (VCM) manufacturing process and polymerization of the VCM.	Marks	L2	CO2

15.	а. b.	Heat exchangers and heaters are essential equipment in petroleum refining and chemical industries for effective heat transfer and energy management. With the help of suitable diagrams, explain the working principles of the following equipment: • Heat Exchanger • Box-Type Pipe Still Heater • Cylindrical Pipe Still Heater For each type, describe the constructional features and mechanisms of heat transfer. The Vacuum Distillation Unit (VDU) plays a critical role in petroleum refining by separating heavier fractions under	10 + 10 Marks	L2	CO3
		reduced pressure. With the help of a clear schematic diagram, describe the process steps involved in the operation of a Vacuum Distillation Unit (VDU). (Describe the process in your own words)			
16.	a.	Or Describe the interior process that occurs inside the ADU with a		L2	CO3
		net sketch. (describe the process with your own words)	10 + 10		
	b.	With a suitable sketch discuss single stage desalter and two stage desalter process. Also explain the importance of desalters. (Describe the process in your own words)	Marks	L2	CO3
17.	a.	Vis-breaking is an important thermal cracking process used in		L2	CO4
		petroleum refining to reduce the viscosity of heavy residual oils. With the help of well-labeled schematic diagrams, discuss in detail the following two types of vis-breaking processes: • Simple Vis-breaking Process • Soaker Vis-breaking Process	10 + 10 Marks		
	b.	Explain the delayed coking process with a suitable diagram. Also describe key benefits and disadvantages of the delayed coking process.		L2	CO4
	<u> </u>	0r		<u> </u>	
18.	a.			L2	CO4
	•		•	•	

