Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE	Program: B. Tech (PET)				
Course Code: PET2012	Course Name: Reservoir Fluid Mechanics				
Semester: IV	Max Marks: 100	Weightage: 50%			

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	20	20	30	30	N.A.

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.	Recall Bernoulli's equation.	2 Marks	L1	CO3
2.	Identify the correct answer from the below options:	2 Marks	L1	CO3
	The continuity equation for incompressible flow in three-dimensional			
	Cartesian coordinates is-			
	A) $\partial^2 \mathbf{u}/\partial \mathbf{x}^2 + \partial^2 \mathbf{v}/\partial \mathbf{y}^2 + \partial^2 \mathbf{w}/\partial \mathbf{z}^2 = 0$			
	B) $\partial p/\partial x + \partial p/\partial y + \partial p/\partial z = 0$			
	C) $u + v + w = 0$			
	D) $\partial u/\partial x + \partial v/\partial y + \partial w/\partial z = 0$			
3.	Recall the mathematical expression of velocity at any point of a pitot tube.	2 Marks	L1	CO3
4.	Describe the Newton's second law of motion.	2 Marks	L1	CO3
5.	Memorize four assumptions of Bernoulli's theorem.	2 Marks	L1	CO3
6.	Memorize difference between compressible and incompressible flow.	2 Marks	L1	CO4

7.	A pipe carries water at a velocity of 5 m/s. If the diameter of the pipe is 0.09 m, state the mass flow rate. (Consider the density of the fluid is 1000 kg/m³; do not skip any steps)	2 Marks	L1	CO4
8.	Recall the correct answer from the options as given below: The head loss due to sudden contraction when C_c is not given to you will be- A) $h_c = 0.375 \frac{V_2^2}{2g}$ B) $h_c = 0.5 \frac{V_2^2}{2g}$ C) $h_c = 0.375 \frac{V_1^2}{2g}$ D) $h_c = 0.5 \frac{V_1^2}{2g}$	2 Marks	L1	CO4
9.	Identify the correct answer from the below options: The expression for head loss due to sudden enlargement can be expressed as- A) $h_e = \frac{(V_2 - V_1)^2}{3g}$ B) $h_e = \frac{(V_1 - V_2)^2}{2g}$ C) $h_e = \frac{(V_2 - V_1)^2}{4g}$ D) $h_e = \frac{(V_1 - V_2)^2}{4g}$	2 Marks	L1	CO4
10.	State stagnation pressure.	2 Marks	L1	CO4

Part B

11.	a.	Show that for a vertical surface submerged in liquid		L3	CO1
		$h^* = \frac{I_G + A\overline{h^2}}{A\overline{h}} = \frac{I_G}{A\overline{h}} + \overline{h}$	10 + 10 Marks		
	b.	Demonstrate that for an inclined surface submerged in liquid	Marks	L3	CO1
		$h^* = \frac{I_G \sin^2 \theta}{A \overline{h}} + \overline{h}$			
		0r			
12.	a.	Solve for the total pressure on a circular plate of diameter 1.5 m		L3	CO1
		which is placed vertically in water in such a way that the centre			

	b.	A rectangular plane surface 2 m wide and 3 m deep lies in water in such a way that its plane makes an angle of 30° with the free surface of water. Solve for the total pressure and position of centre of pressure when the upper edge is 1.5 m below the free water surface. FREE WATER SURFACE FREE WATER SURFACE 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	10 + 10 Marks	L3	CO1
13.	a.	The diameter of a pipe at the sections 1 and 2 (see below figure) are 10 cm and 15 cm, respectively. Solve for the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is 5 m/s. Solve also the velocity at section 2.	10 + 10 Marks	L3	CO2

	b.	$D_1=10 \text{cm}$ $D_2=15 \text{cm}$ $V_1=5 \text{m/sec}$		L3	CO2
	D.	A 25 cm diameter pipe caries oil of specific gravity 0.9 at a velocity of 3 m/s. At another section the diameter is 20 cm. Solve		L3	CUZ
		for the velocity at this section and also mass rate of flow of oil.			
		Or			
14.	a.	A fluid element is flowing in x, y, and z directions, respectively. Show the empirical relationship for incompressible fluid flow and at steady flow.	10 + 10 Marks	L3	CO2
	b.	For a fluid flow in a Cartesian system with a velocity of V, show		L3	CO2
		that the acceleration A = $\sqrt{a_x^2 + a_y^2 + a_z^2}$			
15.	2	From the Euler's equation of motion produce Bernoulli's		L3	CO3
13.	a. 	equation.	10 + 10 Marks		
	b.	Water is flowing through a pipe of 10 cm diameter under a pressure of 30.43 N/cm ² (gauge) and with mean velocity of 4.0		L3	CO3

		m/s. Solve for the total head or total energy per unit weight of the water at a cross-section, which is 10 m above the datum line.			
	•	0r		•	
16.	a.	An orifice meter with orifice diameter 10 cm is inserted in a pipe of 20 cm diameter. The pressure gauge fitted upstream and downstream of the orifice meter gives readings of 19.62 N/cm² and 9.81 N/cm², respectively. Co-efficient of discharge for the orifice meter is given as 0.6. Solve for the discharge of water through pipe.	10 + 10 Marks	L3	CO3
	b.	A pipe, through which water is flowing, is having diameter, 30 cm and 20 cm at the cross-sections 1 and 2, respectively. The velocity of water at section 1 is given 6 m/s. Solve for the velocity head at sections 1 and 2 and also rate of discharge.		L3	CO3
17.	a.	Major loss in a pipe can be calculated if velocity (V) and Chezy's		L3	CO4
271	u.	constant (C) value is known to you. Show that $V = C\sqrt{mi}$	10 + 10		
	b.	A crude oil of kinematic viscosity 0.4 stoke is flowing through a pipe of diameter 300 mm at the rate of 300 liters/s. Solve for the head lost due to friction for a length of 50 m of the pipe.	Marks	L3	CO4
		Or			
18.	a.	Demonstrate the mathematical expression for energy loss in a pipe due to sudden enlargement.	10 + 10 Marks	L3	CO4
	b.	Solve for the loss of head when a pipe of diameter 300 mm is suddenly enlarged to a diameter of 600 mm. The rate of flow of water through the pipe is 350 liter/s.		L3	CO4