Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations -MAY 2025

School: SOEProgram: B. Tech.-PETCourse Code: PET2016Course Name: Shale Gas (DE-X)Semester: IVMax Marks: 100Weightage: 50%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	06	08	44	42	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than Roll No. in the specified place only.

Part A

Answer ALL the Questions. Each question carries 2 Marks.

$100 \times 2M = 20M$

1.	Identify the correct answer:	2	L1	CO1
	diagenetic process in shale is responsible for reducing porosity over	Marks		
	time.			
	a) Compaction			
	b) Bioturbation			
	c) Erosion			
	d) Hydrothermal alteration			
2.	Identifythe correct answer:	2	L1	CO1
	is the primary source of hydrocarbons in shale gas reservoirs.	Marks		
	a) Bitumen			
	b) Kerogen			
	c) Carbonate minerals			
	d) Sand grains			
3.	Name the right words and fill up the blanks:	2	L1	CO1
	Shale reservoirs are characterized by extremely low and	Marks		
4.	Select the correct answer:	2	L1	CO2
	is a primary cause of wellbore instability in gas shale reservoirs.	Marks		
	a) High gas saturation			
	b) Changes in pore pressure			

	c) Low organic content			
	d) Decreased temperature			
5.	Identify the statement Ture or False:	2	L1	CO2
	Wellbore instability in gas shales can be caused by changes in pore	Marks		
	pressure and mechanical failure of the rock.			
6.	Define the importance of hydraulic fracturing in gas shale reservoirs.	2	L1	CO2
		Marks		
7.	Define the influence of bedding planes on shale anisotropy.	2	L1	CO2
		Marks		
8.	List the major factors that influence shale gas production.	2	L1	CO3
		Marks		
9.	Define the role of proppants in the hydraulic fracturing process.	2	L1	CO3
		Marks		
10.	List the various water management issues involved in shale gas	2	L1	CO4
	production.	Marks		

Part B

Answer the Questions.

Total Marks 80M

11.	a.	Explain the relationship between TOC, kerogen type, and thermal	10	L2	C O3
		maturity.	Marks		
		shale gas potential.			
	b.	Discuss the role of shallow seismic techniques and seismic data	10	L2	CO3
		interpretation in the exploration and evaluation of shale gas reservoirs	Marks		
		0r			
12.	a.	Describe the effects of hydraulic fracturing fluids on groundwater.	10	L2	CO3
		Predict the long-term consequences if not properly managed.	Marks		
	b.	Classify the different types of clay minerals found in shale formations.	10	L2	CO3
			Marks		
	•			•	

13.	a.	Explain the causes, impacts, and preventive measures related to	10	L2	CO4
		blowout events in shale gas production.	Marks		
	b.	Illustrate the guidelines and regulations necessary for sustainable	10	L2	CO4
		shale gas exploration and exploitation.	Marks		
	•				
14.	a.	Classify the major environmental concerns associated with shale gas	10	L2	CO4
		production.	Marks		
		Explain the impacts of major environmental concerns associated with			
		shale gas production.			
	b.	Explain the main environmental impacts of methane emissions during	10	L2	CO4
		shale gas production.	Marks		

15.	a.	Solve a case study where a shale sample exhibits the following	10	L3	CO3
		geochemical parameters:	Marks		
		TOC = 2.5%, $S1 = 1.2 mg HC/g$, $S2 = 5.8 mg HC/g$, $S3 = 0.5 mg HC/g$,			
		$T_{\text{max}} = 440$ °C			

	1				
		Make use of this data to assess the hydrocarbon potential and maturity			
		of the source rock. Also, identify what S1, S2, and S3 stand for and			
		explain their significance in shale gas exploration.			
	b.	Apply gamma ray, porosity, and mineralogical analyses to develop an	10	L3	CO3
		effective strategy for exploring and characterizing shale formations in	Marks		
		natural gas extraction.			
	ı	Or			
16.	a.	Demonstrate your understanding of chemical usage in hydraulic	10	L3	CO3
		fracturing by identifying commonly employed substances.	Marks		
		Illustrate the health hazards linked to any three chemicals.			
		Predict the potential consequences of long-term exposure to them.			
	b.	Demonstrate an effective and comprehensive water management	10	L3	CO3
		strategy for a large-scale shale gas hydraulic fracturing operation,	Marks		
		ensuring the protection of sensitive groundwater resources and			
		vulnerable local ecosystems.			
		valificable focal ecosystems.			
17.	a.	Illustrate the environmental and safety challenges caused by	10	L3	CO4
		atmospheric emissions and noise pollution from shale gas production.	Marks		
	b.	Demonstrate the key air quality impacts of shale gas operations and	10	L3	CO4
		explain how dual-fuel technology can be employed to reduce these	Marks		
		environmental concerns.			
	ı	Or			
18.	a.	Apply your understanding to identify key social and environmental	10	L3	CO4
		impacts of shale gas development on local communities.	Marks		
		Prepare effective strategies that can be developed to solve these issues			
		and promote sustainable growth.			
	b.	Interpret the environmental risks associated with induced seismicity	10	L3	CO4
		and shale gas operations.	Marks		
		Apply your understanding to demonstrate how practices such as site			
		planning, emission control, and water management can be employed			
		to solve these risks while ensuring safety for both human and			
		ecological communities.			
		<u> </u>			