Roll No.								
----------	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

Date: 31-05-2025 **Time:** 09:30 am – 12:30 pm

School: SOE	Program: B. TechPET	
Course Code: PET3001	Course Name: Geomechanics for Wellbore Stability Analysis	
Semester: IV	Max Marks: 100	Weightage: 50%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	06	08	42	22	22

Instructions:

- 1. Read all questions thoroughly and answer them as directed.
- 2. Do not write anything on the question paper except your Roll Number, and only in the designated space.

Part A Answer ALL the Questions. Each question carries 2 Marks.

$10Q \times 2M = 20M$

1.	Choose the correct answer:	2	L1	CO1
	A geomechanical model consists of key components	Marks		
	a) Pore pressure, tectonic plates, and seismic waves			
	b) In-situ stresses, rock properties, pore pressures, and failure criteria			
	c) Gravity, density, and seismic velocity			
	d) Mineral composition, porosity, and sedimentary structures			
2.	Choose the correct answer:	2	L1	CO1
	is a key application of geomechanical models in reservoirs.	Marks		
	a) Measuring hydrocarbon reserves			
	b) Predicting wellbore stability and hydraulic fracturing			
	c) Identifying rock mineralogy			
	d) Analyzing climate impact on rock formations			
3.	Fill in the blanks with one word:	2	L1	CO1
	Geomechanics is the study of how materials behave under stress	Marks		
	and in the subsurface environment.			
4.	Choose the correct answer:	2	L1	CO2
	Pore pressure is	Marks		
	a) The pressure exerted by overlying rock layers			

	b) The pressure exerted by fluids within the pores of a rock			
	c) The pressure due to tectonic forces			
	d) The total stress in a rock formation			
5.	Identify the statement Ture or False:	2	L1	CO2
	Overpressure in a formation can only be caused by fluid expansion due to temperature increase.	Marks		
6.	Define Overpressure Generation Mechanisms.	2	L1	CO2
		Marks		
7.	Identify the statement Ture or False:	2	L1	CO2
	Poroelasticity accounts for the interaction between fluid pressure and rock	Marks		
	deformation.			
8.	Choose the correct answer:	2	L1	CO3
	best describes shear failure in rocks.	Marks		
	a) Opening of cracks due to low pressure			
	b) Failure due to maximum principal stress only			
	c) Sliding along planes when shear stress exceeds frictional resistance			
	d) Breakage due to thermal expansion			
9.	Identify the statement Ture or False:	2	L1	CO4
	Compressive failure in vertical wells occurs when the hoop stress exceeds	Marks		
	the rock's compressive strength.			
10.	Fill in the blanks with one word:	2	L1	CO5
	Mud penetration into the may weaken the rock through	Marks		
	interactions.			

Part B

Answer	the	Questions.
	CIIC	Questions

Total Marks 80M

11.	a.	Explain the role of faults and fractures in fluid flow within the	10	L2	C O3
		subsurface.	Marks		
	b.	Discuss the representation of fault and fracture data using graphical	10	L2	CO3
		methods.	Marks		
		0r			
12.	Ass	sume that you are associated with an Oil and Gas company as a	20	L3	CO3
	Ge	omechanical Engineer. You have been assigned the task to estimate	Marks		
	Un	confined Compressive Strength (UCS) for the formations encountered in			
	a w	vell drilled in Mumbai Offshore Basin. Refer to the geophysical log data			
	sha	ared in Table 1 and answer the following:			
	(a)	Name the geophysical log data required for the calculation of UCS,			
	(b)	Predict the UCS of the formation encountered at 5160.50 ft using			
		density-porosity data directly, if possible, and			
	(c)	Predict the UCS of the formation encountered at 5168.50 ft using sonic			
		travel time (Δt) data directly.			
		ole 1.1 through Table 1.3 may be referred to for finding out the most			
	sui	table equation to calculate UCS. For enhanced clarity, these tables are			
	als	o presented in the 'Charts and Plots' section at the end.			

Table 1: Geophysical Log data.

Depth	Density	Δt_comp.	Δt_shear	Formation	Formation
(ft)	(g/cc)	(µs/ft)	(µs/ft)	Name	Type
5160.00	2.5969	73.9180	134.3668	X	Sandstone
5160.50	2.7472	72.9881	134.6025		
5161.00	2.6879	70.6541	131.0170		
5161.50	2.6363	70.3154	126.5105		
5162.00	2.6322	68.2713	125.3421		
5162.50	2.6090	64.2715	118.7308		
5163.00	2.7408	57.9452	112.7404		
5163.50	2.5913	54.2315	106.4179		
5164.00	2.7339	49.3006	101.1393		
5164.50	2.7363	48.6093	98.2395		
5165.00	2.7862	46.7769	98.5376		
5165.50	2.7409	47.6919	95.0032		
5166.00	2.7210	47.0965	92.3078		
5166.50	2.7204	47.2167	95.9393		
5167.00	2.7264	46.8250	96.0021		
5167.50	2.7233	47.4132	94.2504	Y	Limestone
5168.00	2.7221	48.2833	94.1394		
5168.50	2.7153	47.7699	95.3368		
5169.00	2.7395	48.9384	93.4016		
5169.50	2.7152	48.2850	95.4636		
5170.00	2.7017	47.7034	95.4235		

Additional Information:

- Assume full saturation of 1.12 g/cc water in the pores.
- Use matrix density of 2.88 g/cc, which is a reasonable value for a matrix of quartz, feldspar, mica and clay.
- Assume hydrostatic pore pressure of 0.44 psi/ft
- Use 9.8 m/s^2 to approximate g, the acceleration due to gravity.

Table 1.1: Equations for estimating UCS of Sandstone.

Equation No.	UCS, MPa	Region where developed	General comments	Reference
1	$0.035 V_p - 31.5$	Thuringia, Germany	==	(Freyburg 1972)
2	$1200 \exp(-0.036\Delta t)$	Bowen Basin, Australia	Fine grained, both consolidated and unconsolidated sandstones with wide porosity range	(McNally 1987)
3	$1.4138 \times 10^7 \ \Delta t^{-3}$	Gulf Coast	Weak and unconsolidated sandstones	Unpublished
4	$3.3 \times 10^{-20} \ \rho^2 V_p^2 \ [(1+\nu)/(1-\nu)]^2 (1-2\nu)$ [1+0.78 V_{clay}]	Gulf Coast	Applicable to sandstones with UCS >30 MPa	(Fjaer, Holt et al. 1992)
5	$1.745 \times 10^{-9} \ \rho V_{\rm p}^2 - 21$	Cook Inlet, Alaska	Coarse grained sands and conglomerates	(Moos, Zoback et al. 1999)
6	$42.1 \exp(1.9 \times 10^{-11} \rho V_{\rm p}^2)$	Australia	Consolidated sandstones with 0.05 $< \phi < 0.12$ and UCS > 80 MPa	Unpublished
7	$3.87 \exp(1.14 \times 10^{-10} \rho V_{\rm p}^2)$	Gulf of Mexico		Unpublished
8	46.2 exp(0.000027E)	·	_	Unpublished
9	$A(1-B\phi)^2$	Sedimentary basins worldwide	Very clean, well consolidated sandstones with $\phi < 0.30$	(Vernik, Bruno et al. 1993)
10	$277 \exp(-10\phi)$	100	Sandstones with 2 < UCS < 360 MPa and $0.002 < \phi < 0.33$	Unpublished

Units used: $V_{\rm p}$ (m/s), Δt (μ s/ft), ρ (kg/m³), $V_{\rm clay}$ (fraction), E (MPa), ϕ (fraction)

Table 1.2: Equations for estimating UCS of Shale.

	UCS, MPa	Region where developed	General comments	Reference
11	$0.77 (304.8/\Delta t)^{2.93}$	North Sea	Mostly high porosity Tertiary shales	(Horsrud 2001)
12	$0.43 (304.8/\Delta t)^{3.2}$	Gulf of Mexico	Pliocene and younger	Unpublished
13	$1.35 (304.8/\Delta t)^{2.6}$	Globally	-	Unpublished
14	$0.5 (304.8/\Delta t)^3$	Gulf of Mexico	-	Unpublished
15	$10 (304.8/\Delta t - 1)$	North Sea	Mostly high porosity Tertiary shales	(Lal 1999)
16	$0.0528E^{0.712}$	_	Strong and compacted shales	Unpublished
17	$1.001\phi^{-1.143}$	-	Low porosity (ϕ < 0.1), high strength shales	(Lashkaripour and Dusseault 1993)
18	$2.922\phi^{-0.96}$	North Sea	Mostly high porosity Tertiary shales	(Horsrud 2001)
19	$0.286\phi^{-1.762}$	-	High porosity ($\phi > 0.27$) shales	Unpublished

Units used: Δt (μ s/ft), E (MPa), ϕ (fraction)

Table 1.3: Equations for estimating UCS of Carbonate.

	UCS, MPa	Region where developed	General comments	Reference
20	$(7682/\Delta t)^{1.82} / 145$	8-8	-0	(Militzer 1973)
21	10(2.44 + 109.14/(t) / 145	5-2	-	(Golubev and Rabinovich 1976)
22	$0.4067 E^{0.51}$	-	Limestone with 10 < UCS < 300 MPa	Unpublished
23	$2.4 E^{0.34}$	a_s	Dolomite with 60 < UCS < 100 MPa	Unpublished
24	$C(1-D\phi)^2$	Korobcheyev deposit, Russia	C is reference strength for zero porosity (250 < C < 300 MPa). D ranges between 2 and 5 depending on pore shape	(Rzhevsky and Novick 1971)
25	143.8 $\exp(-6.95\phi)$	Middle East	Low to moderate porosity (0.05 $< \phi < 0.2$) and high UCS (30 $<$ UCS < 150 MPa)	Unpublished
26	135.9 $\exp(-4.8\phi)$	_	Representing low to moderate porosity (0 $< \phi < 0.2$) and high UCS (10 $<$ UCS < 300 MPa)	Unpublished

13.	a.	Explain how compressive and tensile stresses develop around a	10	L2	CO4
		vertical wellbore and influence wellbore stability.	Marks		
	b.	Describe the impact of stress concentration around a cylindrical	10	L2	CO4
		wellbore on drilling efficiency and operational safety.	Marks		
	Or				

14.	The energy demand is continually increasing and with the decline of	20	L3	CO4
	conventional reservoirs, the importance of understanding unconventional	Marks		
	reservoirs is even greater. Within the last decade, the exploration and			
	production of shale reservoirs has increased significantly, due to coupled			
	horizontal drilling and hydraulic fracturing applications, along with other			
	advancements in completion technologies. Estimation of the lower bound			
	of the minimum horizontal stress, the upper bound of the maximum			
	horizontal stress, and the range of possible magnitudes of the maximum			
	horizontal stress given a magnitude of the minimum horizontal stress.			
	Answer the following based on knowledge of the vertical stress, the pore			
	pressure, and the coefficient of sliding friction.			
	(a) Assuming a coefficient of sliding friction of 0.6, an overburden stress of			
	11500 psi, and a pore pressure of 4200 psi at 5500 ft depth,			
	(i) identify the faulting regime with explanation, and			
	(ii) predict the upper bound of the maximum horizontal stress.			
	(b) Assuming a coefficient of sliding friction of 0.6, an overburden stress of			
	11500 psi, and a pore pressure of 4200 psi at 5500 ft depth,			
	(i) identify the faulting regime with explanation, and			
	(ii) identify the faulting regime and determine the lower bound of the			
	maximum horizontal stress.			

15 .	a.	Explain the mechanisms involved in preventing wellbore instability	10	L2	CO5
		during drilling.	Marks		
	b.	Describe various approaches used to prevent sand production in	10	L2	CO5
		unconsolidated formations.	Marks		
		0r			
16.	Nat	tural fractures are identified from an image log data and the same has	20	L3	CO5
	bee	en presented in Table 1 along with other information gathered from the	Marks		
	san	ne image log. Interpret the data presented in Table 1 and answer the			
	foll	owing:			
	(a)	dip intervals contain the highest number of fractures.			
		(i) 0° to 15°			
		(ii) 15° to 30°			
		(iii) 30° to 45°			
		(iv) 45° to 60°			
		(v) 60° to 75°			
		(vi) 75° to 90°			
	(b)	aperture intervals contain the highest number of fractures.			
		(i) 0 mm to 4 mm			
		(ii) 4 mm to 8 mm			
		(iii) Greater than 8 mm			

- (c) _____ depth intervals contain the highest number of fractures.
 - (i) Less than 5400 feet
 - (ii) 5400 feet to 5600 feet
 - (iii) 5600 feet to 5800 feet
 - (iv) 5800 feet to 6000 feet
 - (v) Greater than 6000 feet
- (d) ____ aperture intervals contain the highest number of nearly north-south striking fractures of which the strike is either between 0° and 15°, or between 75° and 105°, or between 345° and 360°?
 - (i) 0 mm to 4 mm
 - (ii) 4 mm to 8 mm
 - (iii) Greater than 8 mm

Table 1:

Depth (ft)	Strike	Dip	Dip Direction	Aperture
Depth (it)	(degree)	(degree)	(degree)	(millimeter)
5200.82	228.25	76.41	318.25	4.31
5200.97	207.80	86.11	297.80	5.87
5205.07	233.97	84.07	323.97	7.22
5208.82	206.68	82.67	296.68	5.52
5221.97	214.65	77.20	304.65	5.44
5232.42	211.99	79.37	301.99	9.95
5248.54	214.61	79.88	304.61	12.24
5252.68	226.41	84.78	316.41	10.21
5269.20	245.50	80.63	335.50	8.22
5280.63	238.08	81.70	328.08	2.67
5290.00	226.76	83.85	316.76	5.28
5298.56	212.76	82.34	302.76	2.28
5422.93	220.49	75.45	310.49	2.21
5480.59	235.58	78.23	325.58	2.79
5486.79	203.03	80.78	293.03	1.92
5541.47	228.51	78.70	318.51	0.25
5629.33	190.00	82.13	280.00	0.79
5654.14	162.75	18.04	252.75	9.69
5691.06	7.48	15.89	97.48	9.44
5715.48	162.80	7.92	252.80	2.69
5857.44	224.46	85.04	314.46	1.15
5878.72	219.11	86.63	309.11	3.08
6000.14	5.74	11.19	95.74	11.29
6020.27	0.37	40.44	90.37	11.04
6114.42	201.54	56.87	291.54	5.53
6142.56	208.40	59.07	298.40	4.22
6154.56	200.38	56.88	290.38	0.25
6164.20	351.60	5.34	81.60	16.72

17	7. a. Explain the concept of rock strength in compression and how it affects		10	L2	CO3	
			wellbore stability.	Marks		

	b.	Discuss how rock strength anisotropy influences drilling operations.	10	L2	CO3
			Marks		
		0r			
18.	a.	Discuss the importance and techniques of wellbore imaging in	10	L2	CO3
		understanding faults and fractures at depth.			
	b.	Discuss the concept of shear-enhanced compaction and its	10	L2	CO3
		implications on reservoir performance.	Marks		

Tables for Reference

Table 1.1: Equations for estimating UCS of Sandstone.

Equation No.	UCS, MPa	Region where developed	General comments	Reference
1	$0.035 V_p - 31.5$	Thuringia, Germany		(Freyburg 1972)
2	$1200 \exp(-0.036\Delta t)$	Bowen Basin, Australia	Fine grained, both consolidated and unconsolidated sandstones with wide porosity range	(McNally 1987)
3	$1.4138 \times 10^7 \ \Delta t^{-3}$	Gulf Coast	Weak and unconsolidated sandstones	Unpublished
4	$3.3 \times 10^{-20} \ \rho^2 V_p^2 \ [(1+\nu)/(1-\nu)]^2 (1-2\nu)$ [1+ 0.78 V_{clav}]	Gulf Coast	Applicable to sandstones with UCS >30 MPa	(Fjaer, Holt et al. 1992)
5	$1.745 \times 10^{-9} \rho V_{\rm p}^2 - 21$	Cook Inlet, Alaska	Coarse grained sands and conglomerates	(Moos, Zoback et al. 1999)
6	$42.1 \exp(1.9 \times 10^{-11} \ \rho V_{\rm p}^2)$	Australia	Consolidated sandstones with 0.05 $< \phi < 0.12$ and UCS > 80 MPa	Unpublished
7	$3.87 \exp(1.14 \times 10^{-10} \rho V_p^2)$	Gulf of Mexico		Unpublished
8	46.2 exp(0.000027E)	(-)	_	Unpublished
9	$A (1-B\phi)^2$	Sedimentary basins worldwide	Very clean, well consolidated sandstones with $\phi < 0.30$	(Vernik, Bruno et al. 1993)
10	277 $\exp(-10\phi)$	1-1	Sandstones with 2 < UCS < 360 MPa and 0.002 < ϕ < 0.33	Unpublished

Units used: $V_{\rm p}$ (m/s), Δt (μ s/ft), ρ (kg/m³), $V_{\rm clay}$ (fraction), E (MPa), ϕ (fraction)

Table 1.2: Equations for estimating UCS of Shale.

	UCS, MPa	Region where developed	General comments	Reference
11	$0.77 (304.8/\Delta t)^{2.93}$	North Sea	Mostly high porosity Tertiary shales	(Horsrud 2001)
12	$0.43 (304.8/\Delta t)^{3.2}$	Gulf of Mexico	Pliocene and younger	Unpublished
13	$1.35 (304.8/\Delta t)^{2.6}$	Globally	-	Unpublished
14	$0.5 (304.8/\Delta t)^3$	Gulf of Mexico	-	Unpublished
15	$10 (304.8/\Delta t - 1)$	North Sea	Mostly high porosity Tertiary shales	(Lal 1999)
16	$0.0528E^{0.712}$	_	Strong and compacted shales	Unpublished
17	$1.001\phi^{-1.143}$	-	Low porosity (ϕ < 0.1), high strength shales	(Lashkaripour and Dusseault 1993)
18	$2.922\phi^{-0.96}$	North Sea	Mostly high porosity Tertiary shales	(Horsrud 2001)
19	$0.286\phi^{-1.762}$	-	High porosity ($\phi > 0.27$) shales	Unpublished

Units used: Δt (μ s/ft), E (MPa), ϕ (fraction)

Table 1.3: Equations for estimating UCS of Carbonate.

	UCS, MPa	Region where developed	General comments	Reference
20	$(7682/\Delta t)^{1.82} / 145$	8 — 8	<u>=</u>	(Militzer 1973)
21	$10^{(2.44+109.14/(r)}\big/145$	3-3	-	(Golubev and Rabinovich 1976)
22	$0.4067 E^{0.51}$	1-1	Limestone with 10 < UCS < 300 MPa	Unpublished
23	$2.4 E^{0.34}$	_	Dolomite with 60 < UCS < 100 MPa	Unpublished
24	$C(1-D\phi)^2$	Korobcheyev deposit, Russia	C is reference strength for zero porosity (250 < C < 300 MPa). D ranges between 2 and 5 depending on pore shape	(Rzhevsky and Novick 1971)
25	143.8 $\exp(-6.95\phi)$	Middle East	Low to moderate porosity (0.05 $< \phi <$ 0.2) and high UCS (30 $<$ UCS $<$ 150 MPa)	Unpublished
26	135.9 $\exp(-4.8\phi)$	-1	Representing low to moderate porosity (0 $< \phi < 0.2$) and high UCS (10 $<$ UCS $<$ 300 MPa)	Unpublished

Units used: Δt (μ s/ft), E (MPa), ϕ (fraction)