Roll No.						
11011110.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE	Program: B. TechPET				
Course Code: PET3003	Course Name: Offshore Drilling and Petroleum Production Practices				
Semester: VI	Max Marks: 100	Weightage: 50%			

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks					

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2 marks.

10Q x 2M=20M

1.	Identify one suitable fixed-base compliant structure and one appropriate floating-based compliant structure, mentioning their ideal water depth suitability.			2 Marks	L1	CO2
2.	2. Match the offshore platform type with its suitable water depth range.				L1	CO3
	Platform Type	Water Depth Range (meters)				
	A. Jack-up Rig	a) 500 – 3000 m				
	B. Semi-submersible	b) 300 – 1500 m				
	C. Tension Leg Platform	c) 0 – 300 m				
	D. Gravity Based	d) 25 – 150 m				
3.	Name the three primary any one of them.	types of Spars and provide a	brief description of	2 Marks	L1	CO3
4	outline a basic schematic of any offshore mobile drilling unit or floating production unit.			2 Marks	L1	CO3

5.	Match the unit type wi	th buoyancy behaviour.	2 Mark	s L1	CO3
	Offshore Unit Type	Buoyancy Classification			
	A. Semi-submersible	a) Neutrally Buoyant			
	B. TLP	b) Positively Buoyant			
	C. Spar Platform	c) Neutrally Buoyant			
	D. Mini-TLP	d) Positively Buoyant			
6.	List the key contam	inants found in produced water that req	uire 2 Mark	s L1	CO4
U.	treatment before dispo	-	une - man	LI	COT
	croacinone porore disp	3001 01 1 0000			
7.	-	pes of water that contribute to produced water	er in 2 Mark	s L1	CO4
	oil and gas production	•			
8.	Match each componen	t with its correct function:	2 Mark	s L1	CO4
	Component	Function			
	A. Inlet Separator	a) Removes water vapor from gas to			
		prevent hydrate formation			
	B. Suction Scrubber	b) Cools gas after compression			
	C. Gas Compressor	c) Removes fine liquid droplets before			
	d. das dompressor	compression.			
	D. Aftercooler	d) Increases gas pressure and			
		temperature			
	E. Gas Dehydration	e) Removes bulk liquids at the surface			
	Unit	of theme we sum inquition are sum acc			
9.	Identify the blanks:		2 Mark	s L1	CO4
λ.	identity the blanks.			LI	COT
	The temperature inside	le the TEG regeneration unit is typically aro	und		
	°C, and the se	paration that occurs inside the glycol absorp	tion		
	tower is a ph	enomenon caused by mass transfer between	gas		
	and liquid phases.				
10	Ctata the privatels of	a magning gratem and its value in vasistics	ssel 2 Mark	c I1	CO1
10.	• •	a mooring system and its role in resisting ve	SSEI Z Mark	s L1	CO1
	offset.				

Part B

Answer the Questions.

Total Marks 80M

11.	Explain the concept, design, and construction elements of jacketed	20	LZ	COZ
	platforms used in offshore oil and gas exploration, highlighting the	Marks		
	different types and materials involved. Compare fixed-type and			
	compliant offshore platforms, emphasizing their key differences and			
	the factors, such as environmental conditions and water depth, that			
	influence platform selection.			
	11.	platforms used in offshore oil and gas exploration, highlighting the different types and materials involved. Compare fixed-type and compliant offshore platforms, emphasizing their key differences and the factors, such as environmental conditions and water depth, that	platforms used in offshore oil and gas exploration, highlighting the different types and materials involved. Compare fixed-type and compliant offshore platforms, emphasizing their key differences and the factors, such as environmental conditions and water depth, that	platforms used in offshore oil and gas exploration, highlighting the different types and materials involved. Compare fixed-type and compliant offshore platforms, emphasizing their key differences and the factors, such as environmental conditions and water depth, that

0r

12.		uss the "punch through" phenomenon in jack-up rigs, including its	20	L2	CO2
	leg a	es, consequences, and mitigation measures. Compare independent and mat-supported jack-up rigs, highlighting their advantages, dvantages, and suitability under different offshore conditions.	Marks		
13.	stabi platf	lity mechanisms of drillships, semi-submersibles, and spar orms in deepwater drilling. Highlight the key advantages and ational benefits of each type of offshore structure.	20 Marks	L2	CO3
		Or			
14.	units	ain the role of Floating Production Storage and Offloading (FPSO) in offshore oil and gas production, highlighting their applications, ational challenges, and advantages.	20 Marks	L2	CO3
	used	ribe the concept of offshore oil storage, outlining the methods by different platforms such as FPSOs and gravity-based ctures to store oil, and examine the risks linked to offshore storage.			
15.	Desc	ribe the different methods employed for gas dehydration in	20	L2	CO4
13.		ore facilities, emphasizing their distinctions. Detail the glycol	Marks	LZ	LU4
		dration process in offshore natural gas processing and provide a	Marks		
	label	ed flow diagram illustrating the main stages of the glycol dration unit.			
		Or			
16.	prod	ain the key components and processes that make up offshore uction systems. Describe the two-stage separation process used in ore facilities and specify the purpose of each stage.	20 Marks	L2	CO4
17	Erml	ain the concept of subsected by allow applied in affebour duilling	20	1.2	CO4
17.	_	ain the concept of subsea technology applied in offshore drilling production operations by classifying the different subdivisions of	20 Marks	L2	CO4
		ea systems from the wellhead to the subsea flow lines. Describe	riui No		
		functions of each subdivision in detail and discuss the role of			
		otely Operated Vehicles (ROVs) in supporting subsea activities.			
		0r			
18.	a.	Discuss the advantages and limitations of subsea production	10	L2	CO4
		systems, highlighting the factors that make them ideal for ultradeep water operations.	Marks		
	b.	Explain the significance of gas dehydration in offshore surface	10	L2	CO4
		facilities, emphasizing the issues caused by water in the gas phase and the techniques employed to eliminate it.	Marks		