Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE	Program: B. Tech, II SEM (CIV,MEC & PET)			
Course Code: PHY1001	Course Name: Material Physics			
Semester: II	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	23	22	23	22	

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	Define coordination number.	2 Marks	L1	CO1
2.	Briefly explain the primary bonds found in solids.	2 Marks	L1	CO1
3.	What is the role of X-ray diffraction in materials science?	2 Marks	L1	CO1
4.	Explain the Seebeck effect .	2 Marks	L1	CO3
5.	What are the factors affecting the corrosion rate ?	2 Marks	L1	CO3
6.	Convert the temperature of 70 °C into both the Kelvin and Fahrenheit scales.	2 Marks	L1	CO3
7.	What is a nanomaterial ?	2 Marks	L1	CO4
8.	Define the term "surface-to-volume ratio" in the context of nanomaterials.	2 Marks	L1	CO4
9.	What is hardness ?	2 Marks	L1	CO2
10.	A body is compressed to 1/10th of its original volume . What is the resulting volumetric strain on the body?	2 Marks	L1	CO2

Part B

		Answer the Questions.	Total Mar	M	
11.	a.	Explain the Bravais crystal systems along with the relationships	10 Marks	L2	CO1
		between their lattice parameters and angles.			
	b.	Explain the differences between crystalline and amorphous solids.	5 Marks	L2	CO1
	C.	Define dislocation and describe the concept of edge dislocation.	5 Marks	L2	CO1
	_	Or			
12.	a.	What are miller indices? How they are obtained? Draw the (010) (120) and (111) planes and the [011] [010] and [112] directions of a simple cubic crystal.	10 Marks	L3	CO1
	b.	Find the atomic packing factor of FCC structure?	5 Marks	L2	CO1
	C.	What are point defects in crystals? Describe the various types of	5 Marks	L2	CO1
		point defects.			
13.	a.	Draw the stress-strain curve for a metal and explain the different regions of the curve in detail.	10 Marks	L2	CO2
	b.	On increasing the length by 0.5 mm in a steel wire of length 2 m	5 Marks	L3	CO2
		and area of cross-section 2 mm ² , the force required is? [Y for			
		$steel = 2.2 \times 10^{11} N/m^2$			
	C.	Classify metals, ceramics, and polymers based on their	5 Marks	L2	CO2
		properties and give examples.			
		Or			
14.	a.	Explain the difference between Resilience and Toughness of	10 Marks	L2	CO2
		solid material using stress -strain graph.			
	b.	Explain anelastic, viscoelastic, and elasto-plastic behavior of	5 Marks	L2	CO2
		materials with neat diagrams.			
	C.	An elastic spring, designed for high-impact vehicles, is subjected	5 Marks	L3	CO2
		to a load of 102 kg distributed over a surface area of 2000 cm ² .			
		Your supervisor requires the stress to be calculated in			
		kilopascals (kPa) to align with the company's standard reporting			
		format. Can you determine the stress accurately? ($g = 9.8 \text{ m/s2}$,			
		$1 \text{ kg} \cdot \text{m/s}^2 = 1 \text{ Newton (N), } 1 \text{ Pascal (Pa)=} 1 \text{ N/m}^2$).			
4 5	T _		10 Ml	1.0	602
15.	a.	Explain the different heat conduction processes with suitable	10 Marks	L2	CO3
	b.	examples. Derive the relation between the linear thermal expansion	5 Marks	L2	CO3
	D.	coefficient and the areal thermal expansion coefficient.	5 Mai KS	LZ	LUS
	C.	The thermal conductivity of copper is 390 W m ⁻¹ K ⁻¹ . Calculate	5 Marks	L2	CO3
	C.	the rate of heat transfer through a copper wire with area 4.0	J Mai KS	LL	COS
		cm ² and length 0.50 m. The temperature difference between			
		both of the ends of the wire is 30 °C.			
		Or			<u> </u>
16.	a.	Explain different types of corrosion with examples.	10 Marks	L2	CO3
10.	b.	A metal rod is 64.522 cm long at 12 °C and 64.576 cm at 90 °C.	5 Marks	L3	CO3
		Find the coefficient of linear expansion of its material.	J Mai KS	шЭ	
		i ma the coefficient of inical expansion of its material.			

	C.	Define heat capacity, specific heat capacity, and thermal conductivity.	5 Marks	L2	CO3			
17.	a.	Explain how size reduction to the nanoscale affects the chemical,	10 Marks	L2	CO4			
		physical, optical, magnetic, and thermal properties of materials.						
	b.	Explain the difference between the top-down and bottom-up	5 Marks	L2	CO4			
		approaches in nanomaterial synthesis.						
	C.	List and explain a few characterization techniques used to study	5 Marks	L2	CO4			
		nanomaterials, along with their applications.						
	Or							
18.	a.	Explain the classification of nanomaterials with examples?	10 Marks	L2	CO4			
	b.	What are carbon nanotubes (CNTs)? Describe the structures of	5 Marks	L2	CO4			
		single-walled and multi-walled carbon nanotubes.						
	C.	Write brief note on applications of Carbon nanotubes?	5 Marks	L2	CO4			