Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE	Program: B. Tech Physics Cycle			
Course Code: PHY1002	Course Name: Optoelectronics and Device Physics			
Semester: II	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	24	26	

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.
- (iii) Given: $h = 6.625 \times 10^{-34}$ Js; $e = 1.6 \times 10^{-19}$ C; $K = 1.38 \times 10^{-23}$; Jk-1; $c = 3x10^8$ m/s

Part A

Answer ALL the Questions. Each question carries 2 marks.

 $10Q \times 2M = 20M$

1.	Define superconductivity.	2 Marks	L1	CO1
2.	How to form P-Type and N-type Semiconductors?	2 Marks	L1	CO1
3.	Mention any two applications of the Hall effect.	2 Marks	L1	CO1
4.	Mention any two applications of the LED.	2 Marks	L1	CO2
5.	Write any two differences between LED and SOLAR CELL.	2 Marks	L1	CO2
6.	What is a blackbody?	2 Marks	L1	CO3
7.	Write the expression for Schrödinger's time-independent wave equation.	2 Marks	L1	CO3
8.	What are the characteristics of LASER?	2 Marks	L1	CO4
9.	Define Numerical Aperture.	2 Marks	L1	CO4
10.	Define Acceptance angle.	2 Marks	L1	CO4

Part B

		Answer the Questions.	Total Mark	s 80M	[
11.	a.	Distinguish between Conductor, Semiconductor, and Insulator with suitable energy band diagrams.	10 Marks	L2	CO1
	b.	C, Sn, Si, and Ge are present in the same group, but Si and Ge are semiconductors while C and Sn are not. State the reasons. (C-Band gap-5.2 eV, Si-Band gap-1.1 eV, Ge-Bandgap-0.7 eV, Sn-Energy band-0 eV).	5 Marks	L3	CO1
	c.	Estimate the fraction of electrons in the conduction band at 300K of (a) Germanium (E _g = 0.72 eV) (b) Silicon (E _g = 1.1 eV)	5 Marks	L3	CO1
	1	Or			T
12.	a.	Distinguish between Type-I and Type-II superconductors.	5 Marks	L2	CO1
	b.	Explain the Hall effect with the help of a neat diagram. Mention the significance of Hall coefficient.	10 Marks	L2	CO1
	C.	Calculate the Hall voltage when a conductor carrying a current of 100 A, is placed in a magnetic field of 1.5 T. The conductor has a thickness of 1 cm, and the number density of charges inside the conductor is $5.9 \times 10^{28} / \text{m}^3$.	5 Marks	L3	C01
13.	a.	Distinguish between PN junction Diode and Zener Diode	5 Marks	L2	CO2
	b.	Explain the Principle, construction, and working of a solar cell with a neat diagram.	10 Marks	L2	CO2
	C.	A single solar cell (10 cm \times 10 cm) produces a voltage of 0.5 V and a current up to 2.5 A. If the solar intensity is 800 W/m ² , find out the efficiency of the solar cell.	5 Marks	L3	CO2
	1	Or			
14.	a.	Distinguish between Zener Breakdown and Avalanche Breakdown	5 Marks	L2	CO2
	b.	Explain the principle, construction, and working of a LED with neat diagrams.	10 Marks	L2	CO2
	C.	Gallium Arsenide (GaAs) LED has a band gap of 1.5 eV. Calculate the wavelength of light emitted by the LED.	5 Marks	L3	CO2
15.		What are the characteristic properties of matter wayse?	6 Marks	L2	CO3
13.	b.	What are the characteristic properties of matter waves? Calculate the momentum of an electron and the de Broglie wavelength associated with it if its kinetic energy is 1.5 KeV.	7 Marks	LZ L3	CO3

	c.	Compare the energy of a photon with that of a neutron when	7Marks	L3	CO3
		both are associated with a de Broglie wavelength of 1 Å. Given			
		mass of neutron is $1.674 \times 10^{-27} \text{ kg}$			
	•	0r		•	
16.	a.	What are the properties of a wavefunction?	6 Marks	L2	CO3
	b.	The position and momentum of a 10 keV electron are	7 Marks	L3	CO3
		determined simultaneously. If its position is located within 1 Å,			
		what is the percentage uncertainty in its momentum?			
	c.	A particle of mass $m = 9.11 \times 10^{-31}$ kg (mass of an electron) is	7 Marks	L3	CO3
		confined in a one-dimensional box of length $L = 1.0 \times 10^{-9}$ m.			
		Calculate the energy of the particle in the first three quantum			
		states (n=1,2,3).			
		Find the energy difference between the first and second energy			
		levels.			
			I		
17 .	a.	Explain stimulated absorption, Spontaneous and Stimulated	10 Marks	L2	CO4
		emission of radiation with the help of a neat diagram.			
	b.	Explain the conditions for LASER with a neat diagram.	5 Marks	L2	CO4
	c.	The ratio of the population of two energy levels is 1.059×10^{-30} .	5 Marks	L3	CO4
		Find the wavelength of light emitted at 330 K.			
		Or			
18.	a.	Explain the principle of an optical fiber with a neat diagram.	5 Marks	L2	CO4
	b.	Identify the high band width cable which is used in	10 Marks	L3	CO4
		communication system. Explain the communication process			
		from transmitter to receiver with block diagram.			
	C.	Calculate the numerical aperture and acceptance angle in an	5 Marks	L3	CO4
		optical fibre. Refractive indices of core and cladding are			
		respectively 1.41 and 1.4. Wavelength of laser used is 820 n m.			