Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

Date: 03-06-2025 **Time:** 01:00 pm – 04:00 pm

 School : SOCSE/SOE
 Program : B .Tech-Physics Cycle

 Course Code : ECE2007
 Course Name : DIGITAL DESIGN

 Semester : II
 Max Marks: 100
 Weightage: 50%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	10	20	20	25	25

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	In the given Truth Table X, Y, Z are input literals(variables) and F is	2 Marks	L2	CO2
	output literal. In terms of input literals, Express the Canonical Product			
	of Sum (Canonical PoS) Equation for the output F:			
	XYZF			
	0 1 0 1			
	0 1 1 1			
	1 0 0 1			
	1 0 1 0			
	1 1 0 0			
	1 1 1 1			
2.	To Implement a four variable Boolean function, how many number of	2 Marks	L2	CO2
	8X1 MUX(Multiplexers) needed?			
3.	Write the name of the logic circuit which is used to select one data from	2 Marks	L2	CO2
	several input data with the help of selection lines:			
4.	In 8 into 3 line Priority Encoder circuit, input data line D3, D2 & D0 are	2 Marks	L2	CO2
	high means what is the encoded binary value of Encoder?			
5.	Draw the circuit of 1x2 DMUX using basic gates:	2 Marks	L2	CO2

6.	Write the Characteristics table(Functional Table) of D flip-flop:	2 Marks	L2	CO3
7.	Write the Characteristics Equation of D Flip Flop:	2 Marks	L2	CO3
8.	How many JK flip-flops are required to design an N-bit synchronous counter?	2 Marks	L2	CO3
9.	Mention one key difference between a latch and a flip-flop:	2 Marks	L2	CO3
10.	Which flip-flop encounters a forbidden state, and under what input combination does this occur?	2 Marks	L2	CO3

Answer the Questions. 11. a. Find the minimum Product of Sum (PoS) expression using Karnaugh Map for the function: (A,B,C,D)=Σm(0,1,4,6,8,9,14,15). Also construct corresponding logic circuit using only NOR gates: Or 12. a. Determine the minimum SoP for the given Boolean function using K Map F(A,B,C,D)=Σm(0,1,4,6,9, 14,15)+ DC(2,8). Also draw the logic circuit using NAND gate only: 13. a. Draw the ExNOR gate logic circuit using minimum NOR gate: Using two Half Adders and an AND gate, how can a Full Adder circuit from its truth table. Or 14. a. Draw the ExOR gate logic circuit using minimum NOR gate: Using two Half Subtractor and an AND gate, how can a Full Subtractor circuit be designed? Provide a step-by-step derivation of the logic circuit using minimum NOR gate: Using two Half Subtractor and an AND gate, how can a Full Subtractor circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table: 15. a. Using 4x1 MUX, Implement the given Boolean function Y: Y=Σm(1,2,4,11,12, 13,14,15) Or	L3 L3 L3 L3 L3 L3	CO1 CO2 CO2 CO2
Karnaugh Map for the function: (A,B,C,D)=Σm(0,1,4,6,8,9,14,15). Also construct corresponding logic circuit using only NOR gates: Or	L3 L3 L3 L3	CO2 CO2 CO2
12. a. Determine the minimum SoP for the given Boolean function using K Map F(A,B,C,D)=Σm(0,1,4,6,9, 14,15)+ DC(2,8). Also draw the logic circuit using NAND gate only: 13. a. Draw the ExNOR gate logic circuit using minimum NOR gate: Using two Half Adders and an AND gate, how can a Full Adder circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table. Or 14. a. Draw the ExOR gate logic circuit using minimum NOR gate: Using two Half Subtractor and an AND gate, how can a Full Subtractor circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table: 15. a. Using 4x1 MUX, Implement the given Boolean function Y: Y=Σm(1,2,4,11,12,13,14,15) Or	L3 L3 L3 L3	CO2 CO2 CO2 CO2
K Map F(A,B,C,D)=Σm(0,1,4,6,9, 14,15)+ DC(2,8).Also draw the logic circuit using NAND gate only: 13. a. Draw the ExNOR gate logic circuit using minimum NOR gate: b. Using two Half Adders and an AND gate, how can a Full Adder circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table. Or 14. a. Draw the ExOR gate logic circuit using minimum NOR gate: b. Using two Half Subtractor and an AND gate, how can a Full Subtractor circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table: 15. a. Using 4x1 MUX, Implement the given Boolean function Y: Y=Σm(1,2,4,11,12,13,14,15) Or	L3 L3 L3 L3	CO2 CO2 CO2 CO2
 b. Using two Half Adders and an AND gate, how can a Full Adder circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table. Or 14. a. Draw the ExOR gate logic circuit using minimum NOR gate: Using two Half Subtractor and an AND gate, how can a Full Subtractor circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table: 15. a. Using 4x1 MUX, Implement the given Boolean function Y: Y=Σm(1,2,4,11,12,13,14,15) Or 	L3 L3 L3	CO2 CO2 CO2
 14. a. Draw the ExOR gate logic circuit using minimum NOR gate: b. Using two Half Subtractor and an AND gate, how can a Full Subtractor circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table: 15. a. Using 4x1 MUX, Implement the given Boolean function Y: Y=Σm(1,2,4,11,12,13,14,15) 10 Marks 	L3	CO2
 b. Using two Half Subtractor and an AND gate, how can a Full Subtractor circuit be designed? Provide a step-by-step derivation of the logic circuit from its truth table: 15. a. Using 4x1 MUX, Implement the given Boolean function Y: Y=Σm(1,2,4,11,12,13,14,15) Or 	L3	CO2
Y=Σm(1,2,4,11,12, 13,14,15) Or	L3	CO4
		1
 16. a. Design Full Adder using 3 into 8-line Decoder: b. Implement 8x1 MUX using possible lower order MUX(If needed use Gates also): 	L3 L3	CO4 CO4
17. a. Design a combinational logic circuit with valid output bit, Which is used for Priority based 4 into 2 line Encoder:	L3	CO4
0r		
18. a. Design a TWO BIT Magnitude Comparator Circuit: 15 Marks	L3	CO4
19. a. Draw the block diagram of PIPO shift registers using D Flip-Flop: b. Draw the logic circuit of JK Flip-Flop with clock signal and derive the following characteristics: 10 Marks	L3 L3	CO5
i) Characteristic Table ii) Characteristic Equation (Next State Equation) iii) Excitation Table	-3	
Or		
20. a. Draw the block diagram of SIPO shift registers using D Flip-Flop: 5 Marks	L3	CO5

	b.	Illustrate the logic circuit of an SR latch with an Enable input and derive its following characteristics: i) Characteristic Table ii) Characteristic Equation (Next State Equation) iii) Excitation Table	10 Marks	L3	CO3
21.	a.	Design a 3-bit synchronous counter using JK flip-flops, incorporating a state diagram and table to illustrate counting from 7 to 0 (DOWN COUNTER):	20 Marks	L3	CO5
	•				
22.	a.	Design a 4-bit synchronous counter using D flip-flops, incorporating a state diagram and table to illustrate counting from 0 to 15 (UP COUNTER):	20 Marks	L3	CO5