Roll No.							I

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOEProgram: B. Tech(Electronics and Communication Engg)Course Code: ECE3012Course Name: Information Theory and CodingSemester: VIMax Marks:100Weightage: 50%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	22	22	28	28	NA

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $100 \times 2M = 20M$

1.	Differentiate between source encoder and channel encoder	2 Marks	L1	CO1
2.	Draw the code diagram for the following codes S1={00}, S2={01}, S3={101}, S4={1100}, S5={1110}	2 Marks	L1	CO2
3.	For a coding technique of ternary code, seven symbols are available. Is it possible to code using Huffman coding without adding dummy symbols	2 Marks	L1	C03
4.	Brief about different types of classification of codes	2 Marks	L1	CO4
5.	List different properties of Mutual Information	2 Marks	L1	CO3
6.	A JPM is given by $P(X,Y) = 0.05$ 0 0.2 0.05 0 0.1 0.1 0 0 0 0.2 0.1 0.05 0.05 0 0.1	2 Marks	L1	C03

	Find all input probabilities and output probabilities			
7.	Write the mathematical equation for channel efficiency and channel redundancy	2 Marks	L1	CO3
8.	List different special channels available.	2 Marks	L1	CO4
9.	What is the importance of parity bits or check bits in block codes	2 Marks	L1	CO4
10.	A continuous channel is having the band width of 5khz and S/N ratio of 10 db, Calculate the channel capacity	2 Marks	L1	CO4

Part R

		Part B			
		Answer the Questions.	Fotal Marks 8	0M	
11.	a.	$\frac{3}{4} \times 1$ $\frac{1/4}{2}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$	20 Marks	L2	CO 1
		For the state diagram of the Maokoff source shown above, find (i) entropy H of the source			
		(ii) Find G1 and G2 and hence show that G1>G2>H			
	1	Or	1		•
12.	a.	$\frac{1/3}{Z}$ $\frac{1}{Z}$ $\frac{2}{Z}$ $\frac{1}{Z}$ $$	20 Marks	L2	1 1
		For the state diagram of the Markoff source shown above, find			
		(i) Entropy H of the source (ii) G1, G2 and G3 and verify G1>G2>G3>H			
13.	a.	A source emits an independent sequence of symbols from an alphabet consisting of five symbols A, B, C, D and E with probabilities of ¼, 1/8, 1/8, 3/16 and 5/16 respectively. Find the Schannon code for each symbol and efficiency of the coding scheme.	10 Marks	L2	CO 2

	b.	A discrete men with probabilit	-			_			symbols	10 Marks	L2	CO 2
		symbols	S0 0.25	S1 0.25	S2 0.125	S3 0.125	S4 0.125	S5 0.0625	S6 0.0625	7 101 110		
		Probability Construct Scha code efficiency	nnon	Fano co	ode for							
						Or						
14.	a.	Design a binary shown below u code efficiency	sing I	Iuffmai	n codin	urce co ig proco ommer	edure. (nt on th	Calculat	e the	20 Marks	L2	CO 2
		P={ 9/32	2, 3/3	32, 3/3	32, 2/ 3	32, 9/3	32, 3/ 3	32, 3/3	2}			
			X={	[0, 1, 2,	, 3} ar	nd X=	{0, 1}					
15.	a.	For the JPM giv H(Y), H(X,Y), H among these en	(X/Y)	, H(Y/X				•		20 Marks	L3	CO 3
				0.2	25	0	0		0			
		P(A,B)=		0.1	10	0.30	0	(0			
				0)	0.05	0.:	10 ()			
				0)	0	0.0	05 0	.1			
				0)	0	0.	05	0			
16.	a.	A binary symm	etric	channe	l has th	Or ne follo	wing na	nise mat	riv	15 Marks	L3	СО
10.	a.	with source pro (i) Dete	obabil ermine 7)	lities of P(Y/ e H(X),	P(x1) X) = 3 H(Y), H	= 2/3 a 4	nd P(x/ /4 H(Y/X)/		and	13 Marks		3
	b.	A CRT terminal computer. The line having usan 10 dB. Assume sent in an inde	l is use CRT i ble ba that t	ed to ens conne s conne andwid he tern	nter alpected the theorem of 31 minal he	ohanum nrough KHz and as 128	neric da voice g d an ou charact	ta into a rade tel tput (S/ cers and	ephone (N) of data is	5 Marks	L3	CO 3

		(i) The average information per character			
		(ii) Capacity of the channel			
		(iii) Find the max rate at which data can be sent from			
		terminal to the computer without error			
17.	a.	For a systematic (7,4) Linear Block Code, the parity matrix P i given by	s 10 Marks	L3	CO4
		P= 1 1 1			
		1 1 0			
		1 0 1			
		0 1 1			
		Find all possible valid code vectors. Draw the corresponding encoding circuit			
	b.	For a systematic (6,3)Linear Block Code, the received coovector is R=[110010] and the parity matrix is given by	le 10 Marks	L3	CO4
		P= 1 0 1			
		0 1 1			
		1 1 0			
		Detect and correct the single error that has occurred due to			
		noise.			
18.	a.	For a systematic (7,4) Linear Block Code, the parity matrix P i given by	s 15 Marks	L3	CO4
		P= 1 1 1			
		1 1 0			
		1 0 1			
		0 1 1			
		(i) Find all possible valid code-vectors.			
		(ii) Draw the corresponding encoding circuit	1		
		(iii) A single error has occurred in each of these receive vectors. Detect and correct those errors. (a)R _A	a		
		$=[0111110]$ (b) $R_B=[1010000]$			
		(iv) Draw the syndrome calculation circuit			
	b.	Discuss different types of errors that may affect the signal	5 Marks	L3	CO4
		during transmission in the channel			