|--|

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE Program: B. Tech		
Course Code: ECE3013	Course Name: Antenna and Wave Propagation	
Semester: VI	Max Marks: 100	Weightage: 50%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	24	24	28	NA

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1.	What is the significance of the near-field and far-field regions?	2 Marks	L1	CO2
2.	Write the expression for the directivity of an antenna.	2 Marks	L1	CO2
3.	Define Poynting vector.	2 Marks	L1	CO1
4.	How can you represent Faraday's Law of electromagnetic induction mathematically?	2 Marks	L2	CO1
5.	Define the specific element S_{ij} of the scattering matrix.	2 Marks	L1	CO3
6.	What type of network is represented using an ABCD matrix?	2 Marks	L2	CO3
7.	Which type of filter performs exactly opposite to a bandpass filter?	2 Marks	L2	CO4
8.	What are the two methods used to modify filter design to employ distributed elements consisting of transmission line sections?	2 Marks	L1	CO4
9.	What is power loss ratio?	2 Marks	L1	CO4
10.	What is a perfect filter?	2 Marks	L1	CO4

Part B

Answer the Questions.	Total Marks	80N
f l: l	10 Mariles	12

11.	a.	Write Maxwell's equations for a linear, homogeneous medium in	10 Marks	L2	CO
		terms of E _s and H _s , assuming only the time factor e^{-jwt} .			1
	b.	A plane wave propagating in the air with $E = (8\widehat{a_x} + 6\widehat{a_y} +$	5 Marks	L3	СО
		$5\widehat{a_z}$) $e^{j(\omega t + 3x - 4y)} \frac{v}{m}$ is incident on a perfectly conducting slab			1
		positioned at $x \le 0$. Find the \vec{E} field of reflected wave.			
		positioned at $x \leq 0$. Find the E field of reflected wave.			
	C.	The electric field of a uniform plane electromagnetic wave in the	5 Marks	L3	CO
		free space, along the positive x direction is given by $ec{E}=10(a_y+$			1
		$ja_z)e^{-j25x}$. Determine the frequency and polarization of the			
		wave.			
		Or			
12.	a.	A uniform plane wave propagating in the positive a_z direction	10 Marks	L4	CO
		has electric field intensity given by $E = 94.25 \sin(2\pi \times 10^5 t -$			1
		$(\beta z) a_z$. The medium is free space. Find the following			
		I) Frequency of the wave			
		II) Intrinsic impedance of the medium			
		III) Phase constant			
	b.	IV) Expression for magnetic field intensity (H) Derive the expression for attenuation constant (α) and phase	10 Marks	L1	СО
	D.	constant (β) for a uniform plane wave propagating in good	10 Mai KS	LI	1
		conductor.			_
		- Conductori			
13.	a.	Illustrate the Half Power Beam Width (HPBW) and Beam Width	5 Marks	L2	CO
		between First Null (BWFN) of an antenna with a suitable figure.			2
	b.	What are the fundamental field components of a Half-wave	5 Marks	L1	CO
		dipole antenna, and how do they contribute to radiation?			2
	C.	Derive the expressions for the electric and magnetic fields and	10 Marks	L2	CO
		further determine the radiated power and radiation resistance.			2
1.4	l _	Or	10 Marilia	12	<u></u>
14.	a.	How do the electric and magnetic fields of a Hertzian dipole antenna originate and propagate in space?	10 Marks	L2	CO 2
	b.	Derive their mathematical expressions and further determine	10 Marks	L3	CO
	D.	the radiated power and radiation resistance.	10 Mai KS	L3	2
		the radiated power and radiation resistance.			
15.	a.	Derive the expressions of voltage and current in terms of the	10 Marks	L3	CO
		ABCD parameters for a cascade connection.			3
	b.	Use signal flow graphs to find the output voltages for the	10 Marks	L3	CO
		following type of circuits:			3
		I. Series			
		II. Parallel			
		III. Self-loop			
		IV. Split			

Or						
16.	a.	What is a scattering matrix? State its properties.	5 Marks	L1	CO 3	
	b.	Given the characteristic impedance of the transmission line is 50 Ω , find the scattering matrix [S] of the network: $\begin{array}{c} 8.56\Omega \\ \\ \hline \\ Port \\ 1 \end{array} \begin{array}{c} 8.56\Omega \\ \\ \hline \\ \end{array} \begin{array}{c} 8.56\Omega \\ \\ \hline \\ \end{array} \begin{array}{c} Port \\ 2 \end{array}$	10 Marks	L3	CO 3	
	C.	Define the S-parameters for reciprocal and lossless networks.	5 Marks	L2	CO 3	
17.	a.	Describe the image parameter method for microwave filter design.	15 Marks	L3	CO 4	
	b.	What are periodic structures? Explain with an equivalent circuit.	5 Marks	L2	CO 4	
Or						
18.	a.	Describe the general procedure for filter design.	5 Marks	L3	CO 4	
	b.	What are the different types of filter responses in the insertion loss method defined by their insertion loss, or power loss ratio?	15 Marks	L2	CO 4	