Roll No.						
Non No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

Date: 31-05-2025 **Time:** 09:30 am – 12:30 pm

School: SOE	Program: B. Tech.			
Course Code: ECE3017	Course Name: Linear Algebra for Communication Engineering			
Semester: VI	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	СО3	CO4	CO5
Marks	30	40	30		

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

•		-	
Determine if the given matrix is symmetric, skew-symmetric, or orthogonal.	2 Marks	L2	CO1
$\begin{bmatrix} 3 & 1 & -2 \\ 1 & 2 & 3 \\ -2 & 3 & -4 \end{bmatrix}$			
Prove that matrix A is skew-Hermitian.	2 Morks	L2	CO1
$A = \begin{bmatrix} 2i & 2-4i & -4+2i \\ -2-4i & 0 & 6-i \\ 4+2i & -6-i & -3i \end{bmatrix}$	Maiks		
Perform the following elementary row operation $R_2 \leftarrow R_2 + 4R_1$ on matrix A :	2 Marks	L2	CO1
$A = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \\ -2 & 3 & -4 \end{bmatrix}$			
Determine if the provided matrix is in row-echelon form (REF) and justify your conclusion.	2 Marks	L2	CO1
	orthogonal. $\begin{bmatrix}3&1&-2\\1&2&3\\-2&3&-4\end{bmatrix}$ Prove that matrix A is skew-Hermitian. $A=\begin{bmatrix}2i&2-4i&-4+2i\\-2-4i&0&6-i\\4+2i&-6-i&-3i\end{bmatrix}$ Perform the following elementary row operation $R_2\leftarrow R_2+4R_1$ on matrix A : $A=\begin{bmatrix}1&2&-3\\4&-5&6\\-2&3&-4\end{bmatrix}$ Determine if the provided matrix is in row-echelon form (REF)	orthogonal. $\begin{bmatrix} 3 & 1 & -2 \\ 1 & 2 & 3 \\ -2 & 3 & -4 \end{bmatrix}$ Prove that matrix A is skew-Hermitian. $A = \begin{bmatrix} 2i & 2-4i & -4+2i \\ -2-4i & 0 & 6-i \\ 4+2i & -6-i & -3i \end{bmatrix}$ Marks $A = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \\ -2 & 3 & -4 \end{bmatrix}$ Perform the following elementary row operation $R_2 \leftarrow R_2 + 4R_1$ on matrix A : Marks $A = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \\ -2 & 3 & -4 \end{bmatrix}$ Determine if the provided matrix is in row-echelon form (REF) 2	orthogonal. $\begin{bmatrix} 3 & 1 & -2 \\ 1 & 2 & 3 \\ -2 & 3 & -4 \end{bmatrix}$ Prove that matrix A is skew-Hermitian. $A = \begin{bmatrix} 2i & 2-4i & -4+2i \\ -2-4i & 0 & 6-i \\ 4+2i & -6-i & -3i \end{bmatrix}$ Perform the following elementary row operation $R_2 \leftarrow R_2 + 4R_1$ on matrix A : $A = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -5 & 6 \\ -2 & 3 & -4 \end{bmatrix}$ Determine if the provided matrix is in row-echelon form (REF) 2 L2

	$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$			
5.	Determine if the provided matrix is in row-echelon form (REF) or reduced row-echelon form (RREF) and find its rank. $\begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	2 Marks	L2	CO1
6.	Determine if matrix A satisfies the conditions of a normal matrix and justify your conclusion. $A = \begin{bmatrix} 6 & -3 \\ 3 & 6 \end{bmatrix}$	2 Marks	L3	CO3
7.	Determine if matrix C satisfies the conditions for being positive definite and justify your conclusion. $C = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$	2 Marks	L3	CO3
8.	Identify the range (or specific value) of k for which the matrix becomes positive definite. $B = \begin{bmatrix} 4 & k \\ k & 9 \end{bmatrix}$	2 Marks	L3	CO3
9.	Determine the saddle point or optimal pay-off value for matrix A. $A = \begin{bmatrix} 3 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 2 & 1 \\ 3 & 1 & 2 & 2 \end{bmatrix}$	2 Marks	L3	CO3
10.	Compute the Discrete Fourier Transform (DFT) of the given sequence using the matrix multiplication method. $x(n)=\{1,2,0,1\}$	2 Marks	L3	CO3

Part B

Answer the Questions.	Total Marks 80M

11.	a.	Determine if the vector $u = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$ lies in the column space of	12 Marks	L2	CO 1
		the given matrix.			
		$A = \begin{bmatrix} 2 & 5 & 1 \\ -1 & -7 & -5 \\ 3 & 4 & -2 \end{bmatrix}$			

	b.	Determine the row space of matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$.	8 Marks	L2	CO 1
		Or			1
12.	a.	[2]	12 Marks	L2	СО
12.	a.	Determine if the vector $u = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ lies in the column space	12 Mai KS	LL	1
		of the given matrix.			
		$A = \begin{bmatrix} 2 & 5 & 1 \\ -1 & -7 & -5 \\ 3 & 4 & -2 \end{bmatrix}$			
	b.	Determine the left-hand null space of matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$.	8 Marks	L2	CO 1
13.	a.	Given the vectors $u_1 = (1, 2, 4), u_2 = (2, -3, 1), \text{ and } u_3 =$	10 Marks	L3	CO
		$(2,1,-1)$ in \Re^3 .			2
		i) Verify orthogonality: Show that u_1, u_2, u_3 are mutually			
		orthogonal.			
		ii) Express v as a linear combination: Decompose $v=$			
		$(7, 16, 6)$ in terms of u_1, u_2, u_3 .			
	b.	For the matrix $A = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$, determine the following:	10 Marks	L3	CO 2
		i) Characteristic polynomial			
		ii) Eigen values			
		iii) Eigen vectors			
		iv) diagonal matrix (if diagonalizable)			
	1	Or			T
14.	a.	Given the vectors $u_1 = (1, 2, 4), u_2 = (2, -3, 1), \text{ and } u_3 =$	10 Marks	L3	CO
		$(2,1,-1)$ in \Re^3 .			2
		i) Verify orthogonality: Show that u_1, u_2, u_3 are mutually			
		orthogonal.			
		ii) Express v as a linear combination: Decompose $v =$			
		$(3,5,2)$ in terms of u_1, u_2, u_3 .		<u> </u>	
	b.	For the matrix $A = \begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix}$, determine the following:	10 Marks	L3	CO 2
		i) Characteristic polynomial			
	1	ii) Figon volues	I	1	1

15.	a.	Prove that the matrices $A = \begin{bmatrix} 2 & 4 \\ 0 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ -4 & -2 \end{bmatrix}$ are	7 Marks	L3	CO 2			
		similar via the invertible matrix $P = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix}$.						
	b.	Determine the singular value decomposition (SVD) for the	13 Marks	L3	CO			
		given matrix:			2			
		$A = \begin{bmatrix} 2 & 3 \\ 4 & 10 \end{bmatrix}$						
	Or							

diagonal matrix (if diagonalizable)

ii)

iii)

iv)

Eigen values

Eigen vectors

16.	a.	Perform a singular value decomposition (SVD) on the	13 Marks	L3	CO
		matrix:			2
		$A = \begin{bmatrix} 4 & 0 \\ 3 & -5 \end{bmatrix}$			
	b.	Compute matrix B such that A and B are similar, where:	7 Marks	L3	CO
		Given $A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ and $P = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$.			2

	1		4075 7		
17.	a.	A payoff matrix that lacks a saddle point falls under mixed	10 Marks	L3	CO
		strategy games. One approach to solving such problems is			3
		the odd games method. Apply the odd games method to			
		solve the given payoff matrix.			
		$A = \begin{bmatrix} 1 & 5 \\ 4 & 2 \end{bmatrix}$			
	b.	Determine the possible values of a and b that make the	5 Marks	L3	CO
		(2,2) position a saddle point in the given payoff matrix.			3
		$A = \begin{bmatrix} 2 & 4 & 5 \\ 10 & 7 & b \\ 4 & a & 6 \end{bmatrix}$			
		Determine the optimal mixed strategies for both players	5 Marks	L3	СО
	C.	when Player I selects rows and Player II selects columns in	5 Mai KS	LO	3
		the provided payoff matrix.			3
		[3 1 1 0]			
		$A = \begin{bmatrix} 3 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 2 & 1 \\ 2 & 1 & 2 & 2 \end{bmatrix}$			
		$A = \begin{bmatrix} 1 & 0 & 2 & 1 \end{bmatrix}$			
		[3122]			
		Or		1	1
18.	a.	Determine the maximum and minimum values of the	10 Marks	L3	CO
		objective function $z = 5x + 3y$ subject to the given			3
		constraints.			
		$x + 2y \le 14$			
		$3x-y\geq 0$			
		$x-y\leq 2$			
	b.	Determine the range of values for parameters a and b that	5 Marks	L3	CO
		create saddle points at both (2,2) and (2,3) positions in the			3
		given payoff matrix.			
		$A = \begin{bmatrix} 2 & 4 & 5 \\ 10 & 7 & k \end{bmatrix}$			
		$A = \begin{bmatrix} 10 & 7 & \mathbf{b} \\ 4 & \mathbf{a} & 6 \end{bmatrix}$			
	C.	Determine the dual formulation for the given linear	5 Marks	L3	СО
		programming problem.			3
		$\min 6x_1 + 4x_2 + 2x_3$			
		$s. t. 4x_1 + 2x_2 + x_3 \ge 5$			
		$x_1 + x_2 \ge 3$			
		$x_2 + x_3 \ge 4$			
		$x_i \ge 0$, for $i = 1, 2, 3$			