Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

Date: 31-05-2025 **Time:** 09:30 am – 12:30 pm

School: SOE	Program: B. Tech							
Course Code: ECE3020	Course Name: Computational In Learning	ntelligence and Machine						
Semester: VI	Max Marks: 100	Weightage: 50%						

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	22	26	52		

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.				•		•	rocess of the entire	2 Marks	L1	CO1
		•	t in one g	o which o	an be con	nputation	ally costly for large			
		a sets".	_							
	-						ove statement in			
	case o	f large c	lata sets a	and expla	in the san	ne in deta	il.			
2.	Write the step-by-step algorithm for Linear SVM								L2	CO2
3.	Write	the form	nula for u	ıpdating	members	hip value i	n Fuzzy K Means.	2 Marks	L3	CO3
4.	Draw	the Flov	w chart of	Particle	Swarm 0 ₁	ptimizatio	n	2 Marks	L3	CO3
5.	Find t	he Cova	riance Ma	atrix of th	ne 2-D dat	a		2 Marks	L1	CO1
		X	3	9	12	8				
		Y	7	5	4	10				
6.	What	is a hyp	erplane. (Give the r	nathemat	ical expre	ssion for Hyperplane	2 Marks	L2	CO2
7.	Define	e Overfit	tting with	relevant	diagram			2 Marks	L1	CO1
8.	What is the difference between K Means and Fuzzy K Means Clustering Algorithms								L3	CO3

9.			oid for the	2 Marks	L3	C	203					
	Cluste	4	3	2	5	3	7	1				
	Y	6	4	1	8	5	8	2				
10.	What a	re pBest	and gBe	st in PSO	?				2 Marks	L3	C	203
					P	art B						
					Answer	the Que	estions.		Total M	larks	80M	I
11.	a.	Consid	der a data	a set X= {X	$X_1, X_2, X_3.$	X _N }	and the t	arget vector	20 Mai	ks	L1	C
		t= {1 0	$1\ 1\}^{T}$. Th				1					
		Linea	ır model									
		then	Calculate									
						Or						
12.	a.					• •	•	reduce the		rks	L1	CO
			er of feat				1					
			es the con	1								
			er two									
			e weigh									
			4,1), (2,4)									
), – 11	Y									
					<i>y,c , y,c</i>	, ,,,, ,						
13 .	a.	Given a	20 Marl	ks	L2	CC						
				erplane u								2
		-		h. Specifio	-	-		ne that				
			izes the	margin be	etween th		asses.					
		X1 2		X2 1		+1						
		4		3		+1 -1						
0r		1 7		<u> </u>								
14.	a.	Find th	ne weight	s require	d to perf	orm the	following	<u> </u>	20 Marl	ks	L2	CC
			_	sing Perce	_		_	•				2
				1,1,1) and	_	_	_	ss1 and				
		vectors	s (1,1,1,-									
		learnin	ng rate as	1, bias as	s 0 and in	itial wei	ghts as 0.					
15.	a.	K-mea	ns algori	thm assig	ns data p	oints to	a cluster	such that the	20 Marl	ks	L3	CC
				-			he data p	oints and the				3
				ntroid is			G.	.1				
						_		v the steps of				
					_			ring is done				
		X	nere no a	ata point 1	s are cna	nging ciù	sters.	5				
		^	1	1	3	4	3	J	1			1

		Y	1	2		2		3		4	5				
						·		0r						•	
16.	a.	Explain the Fuzzy K-Means clustering algorithm in a detailed and structured manner. Unlike traditional K-Means where each data point belongs strictly to one cluster, Fuzzy K-Means allows each data point to have degrees of membership across multiple clusters. Elaborate on how this 'fuzziness' is mathematically modelled and how the algorithm iteratively updates the membership values and cluster centroids. Provide a complete step-by-step breakdown of the algorithm and include key equations used in the algorithm, such as the membership function and the centroid update formula												L3	3 3
17.	a.	solving with the Consider numbed maxim C2, C3,	emplog compare help the press froum. A C4, C4	oys thoutation of grobler m 1 to assum 5, and the six	ne proposed on a long to the contract of the contract of the contract of the contract of the contract on a long the contract of the contract o	robab probles. findin re arr at six . Cons	ilistic lems a g the range ants l	tech and fi optin d so t nave the fo	niqu ndin num hat t the c	e and g the order he co cost fi ing a	d is uopting in worst of uncting the	used for nal path		L3	CO 3
		ANT6	4	6	7	8	1	2	5	9	3	C6			
								0r							
18.	a.	Consider a scenario that, five particles (Say A, B, C, D and E) are moving around the solution space (Say P). Each particle moves around the solution space randomly but at the same time attracted by other poles, its past best position (solution) and the best position (solution) of the whole swarm (collection of particles). These poles modify the velocity vector of the particles at each iteration. How these swarms modify their velocity vectors in the form of their position. Form an algorithm with suitable equations and draw the flow chart.										20 Marks	L3	3	