Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

School: SOE	Program: B. Tech-ECE/VLSI Design and Technology			
Course Code: ECE3021	Course Name: Optoelectronic Materials			
Semester: IV	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	19	19	41	21	-

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

3. Compare coherent and non-coherent sources in interference. 4. State Wien's displacement law. 5. What is an active medium in a laser? 6. Compare LED vs. LASER. 7. Define population inversion. 8. Represent the mathematical expression for the Fermi-Dirac distribution. 9. Represent the output voltage relationship of the buck converter. 2 Marks L1 C 2 Marks L1 C 2 Marks L1 C	1.	Compare crystal and lattice.	2 Marks	L1	CO1
4. State Wien's displacement law. 2 Marks L1 C 5. What is an active medium in a laser? 2 Marks L1 C 6. Compare LED vs. LASER. 2 Marks L1 C 7. Define population inversion. 2 Marks L1 C 8. Represent the mathematical expression for the Fermi-Dirac distribution. Parks L1 C Arks L1 C Arks L1 C Arks L1 C Arks L1 C	2.	Define a unit cell and mention its types.	2 Marks	L1	CO1
5. What is an active medium in a laser? 6. Compare LED vs. LASER. 7. Define population inversion. 8. Represent the mathematical expression for the Fermi-Dirac distribution. 9. Represent the output voltage relationship of the buck converter. 2 Marks L1 C 2 Marks L1 C 2 Marks L1 C	3.	Compare coherent and non-coherent sources in interference.	2 Marks	L1	CO2
6. Compare LED vs. LASER. 7. Define population inversion. 8. Represent the mathematical expression for the Fermi-Dirac distribution. 9. Represent the output voltage relationship of the buck converter. 2 Marks L1 C	4.	State Wien's displacement law.	2 Marks	L1	CO2
7. Define population inversion. 8. Represent the mathematical expression for the Fermi-Dirac distribution. 9. Represent the output voltage relationship of the buck converter. 2 Marks L1 C	5.	What is an active medium in a laser?	2 Marks	L1	CO3
8. Represent the mathematical expression for the Fermi-Dirac distribution. 2 Marks L1 C 9. Represent the output voltage relationship of the buck converter. 2 Marks L1 C	6.	Compare LED vs. LASER.	2 Marks	L1	CO3
9. Represent the output voltage relationship of the buck converter. 2 Marks L1 C	7.	Define population inversion.	2 Marks	L1	CO3
	8.	Represent the mathematical expression for the Fermi-Dirac distribution.	2 Marks	L1	CO4
10. List any two applications for DC-to-DC converters 2 Marks I.1 C	9.	Represent the output voltage relationship of the buck converter.	2 Marks	L1	CO4
21 District two applications for 20 to 20 converters.	10.	List any two applications for DC-to-DC converters.	2 Marks	L1	CO4

Part B

Answer the Questions.

Total Marks 80M

11.	a.	Write short notes on the following thermal detectors			
		(i) Thermoelectric Detectors	20 Marks	12	CO2
		(ii) Bolometer	20 Marks	LS	LU3
		(iii) Pneumatic Detectors			

		(iv) Pyroelectric Detectors			
	L	O r	<u> </u>		
12.	a.	Light (Photons) is a mysterious phenomenon that can behave like a wave or a particle, depending on how we observe it. Illustrate with an experiment how light and matter can display characteristics of both classically defined waves and particles, along with conditions for sustained interference.	20 Marks	L3	CO3
13.	a.	Electrical conductivity in solids measures how easily electric current can pass through a substance. Derive an expression for the electrical conductivity of solids using Newton's law of motion.	15 Marks	L2	CO 1
		Or			
14.	a.	Capacitance-voltage (C-V) characterization is used to analyze the electrical properties of dielectric materials, particularly in semiconductor devices like MOS capacitors. Explain the C-V characteristics of MOSFET in detail, along with different modes of operation.	15 Marks	L2	CO 1
15.	a.	Derive and explain the equation in quantum mechanics, allowing us to find the wave function for a given situation and describe its time-independent equation.	15 Marks	L2	CO 2
	1	0r	1		
16.	a.	Explain in detail how the PN junction diode behaves under different bias conditions, with its characteristics.	15 Marks	L2	CO 2
17.	a.	Identify the optical instrument that emits through an optical amplification process based on the controlled discharge of electromagnetic radiation. which generates a very narrow and dense light beam and explain its principle, construction, working, and applications with a neat diagram.	15 Marks	L2	CO 3
		0r		•	
18.	a.	Explain the following photomultiplier configurations with their advantages (i) Venetian blind (ii) Box/grid (iii) Linear focused (iv) Circular edge focused	15 Marks	L2	CO 3
19.	a.	A liquid crystal display (LCD) is a flat, thin display device that leverages technology to provide better picture quality. Explain LCD's working principle, construction, and working and compare it with light emitting diodes.	15 Marks	L2	CO 4
		0r			
20.	a.	Identify the type of DC-to-DC converter with an output voltage magnitude that is either greater or less than the input voltage magnitude. Justify with a real-time example.	15 Marks	L2	CO 4