Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

School: SOE	Program: B.Tech-ECE			
Course Code: ECE3029	Course Name: Digital Image Processing			
Semester: VI	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4
Marks	12	12	38	38

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1	Any color of visible spectrum can be obtained by combining primary and secondary colors and allowing the wavelengths to vary. List the primary colors of light and primary colors of pigment.	2 Marks	L1	CO4
2	There are three leading color models for image processing namely RGB, CMY, and HSI model. What led to the development of CMYK model?	2 Marks	L1	CO4
3	A powerful and simple structure for representing images at more than one resolution is image pyramid. Name the two different types of image pyramids that can be generated for analyzing images.	2 Marks	L1	CO4
4	Identify the most suitable color models used for the following applications: For color monitor display and in color cameras.	2 Marks	L1	CO4
5	Segmentation is considered to be the most difficult task in image processing. List the conditions that must be satisfied for segmenting an image.	2 Marks	L1	CO3
6	Determine the compression ratio and data redundancy for the figure shown below.	2 Marks	L1	CO3

Part B
Answer the Questions.

Total Marks 80

11.	In digital image processing, there are various set and logical	10Marks	L2	CO1
	operations. While dealing with binary images shown below, the			
	foreground (1-valued) and background (0-valued) sets of pixels,			
	we refer Union, Intersection and Compliment (set operations) as			

the OR, AND and NOT logical operations respectively. Considering the two regions (Sets) B1 and B2 as shown in figure below, perform the following Logical Operations.

i. NOT (B2) AND B1
ii. (B1) AND (B2)

or

12.	A digital image is defined by the mathematical function $f(x,y)$,	10Marks	L2	CO1
	where x and y are the two co-ordinates horizontally and vertically,			
	with an amplitude of "f" at any pair of coordinate (x, y) being called			
	the intensity or gray level of the image at that point. Processing of			
	a digital image requires various Pixel-Neighbors relationship such			
	as N4, ND, N8 and various distance measures between pixels such			
	as De, D4, D8 etc. Consider the given below sample image segment			
	of 8 x 8 pixels having intensity values ranging from {0 to 9}: where			
	for pixel P intensity value is 4 and co-ordinates is (6,2) and Q			
	intensity value is 8 with co-ordinates (2,6).			
	2 3 4 1 7 9 8 5 Q			
	0 3 4 1 7 9 8 5			
	8 6 7 9 8 5 2 6			
	3 4 1 7 3 0 1 4			
	1 7 9 7 9 8 5 4			
	6 3 4 1 9 3 0 7			
	2 7 9 0 5 1 7 9			
	Р			
	_			
	a) Determine the City Block distance between pixel P and Q.			
	b) Determine the Chess-Board distance between pixel P and Q.			
	b) betermine the chess-board distance between pixel F and Q.			

13.	Pixel values are integers composed of bits. Values in a 256-level 10 Mar	ks	L2	CO2	
	gray scale image is composed of 8 bits (one byte). A gray scale				ĺ
	image segment with 4*4 pixels is shown below. Perform a suitable				İ

	transformati and S2 plane						-				
			132 129 32 129	64 155	78 3 198 3	232 33 126 233					
						or					
14.	Draw the intensity transformation curves of negative, log, identity, power law with gamma = 0.2 and inverse log transformations. Write the value of output pixel 's' in terms of input pixel 'r' for each transformation.								10Marks	L2	CO2
15.	Abrupt loca derivatives. T are defined i derivatives t properties.	These d n terms	erivati of diff	ves of a erences	digita s. Form	l function	on (digit uitable 1	cal image) Lst and 2nd	10 Marks	L3	C03
					()r					
16.	An informat symbols hav encoding ass least probab shown below	ing the igns the le value	e follo e same es, faili	wing prender numbering to n	robabi er of b ninimi	lities. A its to b ze the	A natur oth the symbols	al binary most and	10 Marks	L3	CO3
16.	symbols have encoding ass least probab	ing the igns the le value	e follo e same es, faili	wing prender numbering to n	robabi er of b ninimi	lities. A its to b ze the	A natur oth the symbols	al binary most and	10 Marks	L3	CO3
16.	symbols have encoding ass least probab shown below	ing the igns the le value and res	e follo e same es, faili sulting	wing pre- e number ing to noting in codin	robabi er of b ninimi ng redu	lities. A	A natur oth the symbols y.	al binary most and	10 Marks	L3	CO3
16.	symbols have encoding ass least probab shown below	al al coding f	e followers failing a2 0.4 ry code for all the	a3 0.06 e using the symbols with the s	robabi er of b ninimi ng redu a4 0.1	lities. A its to be ze the sundance as	A naturoth the symbols y.	al binary most and a1 to a6	10 Marks	L3	CO3

0r

18.	List the steps for creating pyramids with the help of an	10Marks	L3	CO4
	approximation filter, interpolation filter, up sampler and down			
	sampler.			

19.	A computer- in Table bel its four poss used, find l length code ordering the	20 Marks	L3	CO3			
		ning the lowest probability replaces them in the next sou	-	_			
		r_k	$p_r(r_k)$				
		$r_{87} = 87$	0.25				
		$r_{128} = 128$	0.47				
		$r_{255} = 255$	0.03				
		r_k for $k = 87, 128, 186, 255$	0				
		Oı				•	
20.	Explain a m Also prove position inv	20 Marks	L2	CO3			
21.		s pixels to the boundaries of o	-	_	20 Marks	L2	C04

			1	
	consider a Binary image A, and the sub image B2 given below,			
	perform the following operations: A erosion B2, A ^c erosion B2, A			
	dilation B2 and A ^c dilation B2.			
	Image A			
	0 0 0 0 0 0 0 0 0 0 0			
	0 0 1 1 0 0 0 0 0 0			
	0 1 1 1 1 0 0 0 0 0			
	0 1 1 1 1 1 0 0 0 0			
	0 1 1 1 1 1 0 0 0 0 B2			
	0 1 1 1 1 1 0 0 0 0			
	0 1 1 1 1 1 1 0 0 0			
	0 1 1 1 1 1 1 1 1 0 1 1 1 1			
	0 0 0 1 1 1 1 1 0			
	0 0 0 0 0 0 0 0 0 0 0			
	Or			
22.	Mathematical morphology is used as a tool for extracting image	20 Marks	L2	CO4
22.	components that are useful in the representation and description	20 Marks		
	of region shape, such as boundaries, skeletons, and the convex			
	hull. In image processing, we use morphology with two types of			
	sets of pixels: image containing objects and structuring elements			
	(SE's). Given an Image A and its structuring element. Compute the			
	Output Image in for each operation given below.			
	1. $A^c \theta B$			
	2. $A\theta B$			
	3. $A^c \oplus B$			
	4. $A \oplus B$			
	$+$. $M \oplus B$			
	Input Image A Structuring Element with Origin			
	A B			
	0 0 0 0 0 1			
	0 0 1 1 0 0 1			
	0 1 1 1 0 4			
	0 0 1 1 0 0			
	000000			
			1	