Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

Date: 05-06-2025 **Time:** 09:30 am – 12:30 pm

School: SOCSE	Program: B. Tech			
Course Code: ECE3040	Course Name: Embedded Systems			
Semester: VI	Max Marks: 100 Weightage: 50%			

CO - Levels	CO1	CO2	СО3	CO4
Marks	9	24	36	31

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

es? 2 Marks		
es? 2 Marks	L1	CO1
2 Marks	L1	CO1
alog		
S.		
-chip in 2 Marks	L1	CO2
bove		
x16 and 2 Marks	L1	CO2
ie 2 Marks	L1	CO3
intages 2 Marks	L1	CO3
hether it 2 Marks	L1	CO3
ime 2 Marks	L1	CO4
	alog s. chip in bove x16 and 2 Marks e 2 Marks ntages 2 Marks chether it 2 Marks	alog s. chip in bove x16 and 2 Marks L1 e 2 Marks L1 ntages 2 Marks L1 chether it 2 Marks L1 ime 2 Marks L1

9.	Provide two specific examples of applications or domains where Real-	2 Marks	L1	CO4
	Time Operating Systems (RTOS) are implemented.			
10.	For each of the following operating systems, identify its primary	2 Marks	L1	CO4
	application domain or typical use case:			
	a) macOS b) iOS c) RTOS d) Linux			

Part B

		Answer the Questions.	Total Marl	ks 80	M
11.	a.	What are addressing modes? Describe the different addressing	10 marks	L1	CO2
		modes used in ARM architecture, providing one example for			
		each.			
	b.	What are the advantages and disadvantages of a	5 Marks	L1	CO2
		microprocessor using a fixed 32-bit instruction length?			
	c.	How are embedded systems classified?	5 Marks	L1	CO1
		0r			
12.	a.	Compare the TM4C123X and LPC21xx (NXP) architectures based on	10 Marks	L1	CO2
		clock frequency, flash memory, I/O pins, and power consumption.			
	b.	Why is ARM architecture so widely used? Name three	5 Marks	L1	CO2
		companies that manufacture ARM-based processors and list			
		two key features of ARM.			
	C.	Discuss the applications and research areas of embedded	5Marks	L1	CO1
		systems.			
	1		T	T	T
13.	a.	Explain the I ² C protocol used for serial communication in	10 Marks	L3	CO3
		embedded systems.			
	b.	What are a logic probe and an oscilloscope? Describe their uses	5 Marks	L2	CO3
		and limitations.			
	C.	List five key features of the ARM instruction set.	5 Marks	L3	CO2
		Or			
14.	a.	Explain the CAN protocol used for serial communication in	10 Marks	L3	CO3
		embedded systems.			
	b.	What is a logic analyzer and a JTAG debugger? Describe their	5 Marks	L2	CO3
		uses and limitations.			
	c.	Describe the key features of the Thumb instruction set.	5 Marks	L3	CO2
4-		147 · · · · · · · · · · · · · · · · · · ·	40.15	7.0	00:
15.	a.	What is an operating system (OS)? Why is an operating system	10 Marks	L3	CO4
		necessary? List the key functions of an OS.			
	b.	Explain five different types of operating systems, each tailored	5 Marks	L2	CO4
		for specific use cases.			
	c.	What is MicroC/OS-II? Highlight its key features and typical	5 Marks	L3	CO4
		applications.			
		Or			

16.	a.	What is a real-time operating system (RTOS)? What challenges	10 Marks	L3	CO4
		does an RTOS face in embedded systems? Provide an example			
		of a real-life application of RTOS.			
	b.	Explain the architecture of a real-time operating system	5 Marks	L2	CO4
		(RTOS).			
	c.	What is a kernel? List its key responsibilities.	5 Marks	L3	CO4
	•		•		
17.	a.	What is serial communication? What are the two main types of	10 Marks	L3	CO3
		serial communication? Explain each with an example.			
	b.	What is a stepper motor? Explain its working principle.	5 Marks	L2	CO3
	c.	What is RTLinux? Highlight its key features and typical	5 Marks	L2	CO4
		applications.			
		Or	•	•	
18.	a.	Compare I ² C and CAN as serial communication protocols used	10 Marks	L3	CO3
		in embedded systems.			
	b.	What is a DC motor? Explain its working principle.	5 Marks	L2	CO3
	c.	What is VxWorks? List its key features and typical applications.	5 Marks	L2	CO4