Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOEProgram: B. Tech-ECECourse Code: ECE3161Course Name: DIGITAL SIGNAL PROCESSINGSemester: IVMax Marks: 100Weightage: 50%

CO - Levels	CO1	CO2	СО3	CO4
Marks	14	14	41	31

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

	<u>.</u>		•	
1.	Distinguish between linear convolution and circular convolution?	2 Marks	L2	CO1
2.	Define DFT and IDFT.	2 Marks	L2	CO1
3.	Define a twiddle factor and state its properties	2 Marks	L2	CO2
4.	Draw the signal flow graph of a 2-point Radix-2 Decimation-in- Frequency (DIF) FFT.	2 Marks	L2	CO2
5.	How does a Butterworth filter compare to a Chebyshev filter?	2 Marks	L2	CO 3
6.	What are the available transformation techniques for converting an analog transfer function into a digital transfer function?	2 Marks	L2	CO3
7.	What is prewarping, and why is it used in digital filter design?	2 Marks	L2	CO3
8.	What is the equation for the rectangular window function?	2 Marks	L2	CO4
9.	Write the magnitude and phase function of FIR filter when impulse response is symmetric and N is Odd.	2 Marks	L2	CO4
10.	What are the well-known design techniques for linear-phase FIR filters?	2 Marks	L2	CO4

Part B

Answer the Questions.

Total Marks 80M

11.	a.	Find the linear convolution of the two sequences: $x(n)=\{1,-1\}$	10	L2	CO1
		1,2,3} and h(n)={2,3,-2,-3}	Marks		
		Or		T	
12.	a.	Find the circular convolution of the two sequences:	10	L2	CO1
		$x(n)=\{1,2,3,4\}$ and $h(n)=\{2,1,2,1\}$	Marks		
-					
13.	a.	An 8-point sequence is given by $x(n)=\{1,2,3,4,4,3,2,1\}$. Compute	10	L3	CO2
		8-point DFT of x(n) using radix-2 DIT-FFT.	Marks		
		0r			
14.	a.	An 8-point sequence is given by	10	L3	CO2
		$x(n)=\{1,1,1,1,1,1,1,1,1,1\}$. Compute 8-point DFT of $x(n)$ using	Marks		
		radix-2 DIF-FFT.			
45	1		4.0		604
15.	a.	For the given desired frequency response,	10 Marilia	L3	CO4
		$\left e^{-j4\omega} \right e^{-j4\omega} = \frac{\pi}{2} < \omega < \pi$	Marks		
		$H_d(e^{j\omega}) = \begin{cases} e^{-j4\omega} & \frac{\pi}{4} < \omega < \pi \\ 0 & otherwise \end{cases}$			
		(0 otherwise			
		with length N= 9, Using rectangular window, Design FIR filter			
		with frequency response:			
	1	Or	4.0		
16.	a.	For the given desired frequency response	10	L3	CO4
		$H_d(e^{j\omega}) = \begin{cases} e^{-j5\omega} & \omega \le \frac{\pi}{4} \\ 0 & otherwise \end{cases}$	Marks		
		$H_d(e^{j\omega}) = \begin{cases} 1 & \text{if } = 4 \end{cases}$			
		(0 otherwise			
		with length N=11, Using rectangular window, Design FIR filter			
		and find frequency response?			
17.		Design a linear phase FIR lowpass filter using hamming	15	L3	CO4
17.	a.	window by taking 5 samples of window sequence and with a	Marks	LO	C04
		cut-off frequency, $\mathbf{w}_c = \mathbf{0.35\pi rad/sample}$.	Maiks		
		\mathbf{Or}			
18.	a.	Design a linear phase FIR highpass filter using rectangular	15	L3	CO4
10.	a.	window by taking 5 samples of window sequence and with a	Marks	ப்	LU4
		cut-off frequency, $w_c = 0.48\pi \text{ rad/sample}$	Marks		
		eut on frequency, w _c = 0.10tt raa/ sample			
19.	a.	Using Impulse Invariant transformation, find the transfer	5 Marks	L3	CO3
		function of the digital filter for $H(s) = \frac{10}{(S+0.5)(S+0.25)}$ for			
		T=0.2Sec.(5 Marks)			
	b.	Realise the given difference equation			
	υ.	$y(n) - \frac{3}{10}y(n-1) - \frac{4}{11}y(n-2) + \frac{3}{16}y(n-3) = x(n) - \frac{3}{7}x(n-1) + \frac{5}{9}x(n-2)$	10		
		Using Direct form I and Direct form II methods.	Marks		
		Or		1	,
·					

20.	a.	Using Bilinear transformation, find the transfer function of the digital filter for $H(s) = \frac{0.5}{(S^2 + 0.5S + 0.25)}$ for T=0.2Sec.	5 Marks	L3	CO3
	b.	Obtain direct form-I and Direct form II realizations for the transfer function of the system given by $H(z) = \frac{0.5 + 0.75z^{-1} + 0.5z^{-2}}{0.75 + 0.125z^{-1} - 0.25z^{-2}}$ (10 Marks)	10 Marks		

21.	a.	The specification of the desired low pass digital filter is $0.8 \le$	20	L3	CO3
		$ H(w) \le 1.0$; $0 \le w \le 0.35\pi$	Marks		
		$ H(w) \leq 0.3 \; ; \; 0.6\pi \leq w \leq \pi$			
		Design a Chebhshev Digital filter using impulse invariant			
		transformation for T=1 sec.			
		0r			
22.	a.	Design a Digital Butterworth filter that satisfies the following	20	L3	CO3
		constraints using Bilinear transformation for T=0.2 sec.	Marks		
		$0.75 \le H(w) \le 1.0$; $0 \le w \le \frac{\pi}{4}$			
		$ H(w) \le 0.25$; $\frac{3\pi}{4} \le w \le \pi$			