Roll No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE/SOCSE	Program : B.Tech – Basic Engineering Science Cycle			
Course Code: EEE1007	Course Name: Basics of Electrical and	Electronics Engineering		
Semester: II	Max Marks:100	Weightage:50%		

CO - Levels	CO1	CO2	СО3	CO4	CO5
Marks	24	24	26	26	

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.	What is the equivalent resistance, if there are three resistors connected in series.	2 Marks	L1	CO1
2.	Write the relationship between line voltage and phase voltage in a three-phase, star-connected network.	2 Marks	L1	CO1
3.	List any two differences between a conductor, insulator and semiconductor.	2 Marks	L1	CO2
4.	Why is a capacitive filter included at the output of a rectifier.	2 Marks	L1	CO2
5.	What is the basic principle behind the working of a transformer.	2 Marks	L1	CO3
6.	Write the expression to calculate the Back EMF of a DC motor.	2 Marks	L1	CO3
7.	What are the two types of rotors used in an induction motor.	2 Marks	L1	CO3
8.	Define a transistor.	2 Marks	L1	CO4
9.	For a BJT to operate in active region, what should be the biasing condition of the emitter-base junction and collector-base junction.	2 Marks	L1	CO4

Ì	10. Name all the three terminals of an E-MOSFET.	2 Marks	L1	CO4	ĺ
				1	i

Part B

Answer the Questions.	Total Marks 80M
Answer the Questions.	i otai mai ks oom

		Answer the Questions.	i utai mai i	13 00	IVI
	a.	With examples, explain the classification of elements based on (i) Ability to deliver power, (ii) Size of the element	10 Marks	L2	CO1
11.	b.	A series R-L-C network consists of 25Ω resistor, 12Ω inductive reactance and 38Ω capacitive reactance. A voltage source (Vrms) of 230V is supplied and a current (Irms) of 6.4A is observed. Calculate (i) impedance, (ii) phase, (iii) power and (iv) power factor of the network.	10 Marks	L2	CO1
		0r			
	a.	Draw the circuit diagram and phasor diagram for a series resistive-inductive-capacitive (RLC) network. Explain the phasor diagram.	10 Marks	L2	CO1
12.	b.	$A20\Omega$ resistor is connected in series, with a parallel combination of 50Ω and 100Ω resistors. If the voltage supplied to the resistors is 50V, calculate the power consumed by the all the three resistors.	10 Marks	L2	CO1

13.	a.	Sketch the I-V characteristics of a p-n junction diode in both forward-bias and reverse-bias condition. Label and explain (i) Knee voltage, (ii) Static resistance, (iii) Dynamic resistance	10 Marks	L2	CO2
	b.	Explain the (i) ideal diode model and (ii) piece-wise linear diode model with appropriate diagrams.	10 Marks	L2	CO2
		0r			
	a.	With the help of a circuit diagram and appropriate waveforms, explain the working of a half-wave rectifier without and with a capacitive filter.	10 Marks	L2	CO2
14.	b.	For the circuit shown below, determine (i) load voltage (V_L), (ii) resistive voltage (V_R) and (iii) Zener current (I_Z).	10 Marks	L2	CO2

		With the help of appropriate diagrams, describe the			
15.	a.	construction of a single-phase transformer, and explain its	10 Marks	L2	CO3
		working.			

	b.	Explain the different types of DC machines. Compare the speed-torque characteristics of each motor type.	10 Marks	L2	CO3
		Or			
a.	a.	With neat diagram, explain the construction of a three-phase induction motor.	10 Marks	L2	CO3
16.	b.	Describe the construction of a permanent magnet DC motor, and explain its working principle.	10 Marks	L2	CO3
17.	a.	Draw the input characteristics and output characteristics of a common-base configured npn transistor. Explain the relationship between the current and voltage in each case.	10 Marks	L2	CO4
17.	b.	For a npn transistor, derive the relationship between (i) Common-base gain (α) and Common-emitter gain (β) (ii) Common-emitter gain (β) and Common-collector gain (γ)	10 Marks	L2	CO4
		Or			
	a.	Draw the transfer characteristics and output characteristics of a n-channel JFET. Label and explain ohmic region, saturation region and breakdown region.	10 Marks	L2	CO4
18.	b.	With a neat sketch of a n-channel enhancement type MOSFET, explain the working of the E-MOSFET under the following conditions. (i) $V_{GS} = 0V$, $V_{DS} = positive$, (ii) $V_{GS} = positive$, $V_{DS} = positive$.	10 Marks	L2	CO4