Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

School: SOE	Program: B. Tech-EEE			
Course Code: EEE2027	Course Name: Opamps and Linear Integrated Circuits			
Semester: IV	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	24	26	

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.	Differentiate between line and load regulation.	2 Marks	L1	CO3
2.	Explain advantages of active filters over passive filters?	2 Marks	L1	CO2
3.	Parameters of an op-amp gives an idea about the op-amp when it is used in any electronic circuit. Define CMRR.	2 Marks	L1	CO1
4.	What is the circuit configuration for an RC-based oscillator using operational amplifiers?	2 Marks	L1	CO3
5.	If the conversion time of 8 bit flash ADC is 10 microseconds find the maximum frequency of a sinusoidal voltage that can be digitalized?	2 Marks	L1	CO4
6.	"The current entering the inverting and non-inverting terminal of an ideal op-amp is 0 A". Describe using a single line how you will defend the statement.	2 Marks	L2	CO2
7.	Define stability of an digital to analog convertor.	2 Marks	L1	CO4
8.	If the conversion time of 8 bit flash ADC is 10 microseconds find the maximum frequency of a sinusoidal voltage that can be digitalized?	2 Marks	L1	CO4
9.	The bias currents for the emitter coupled transistors of a differential amplifier are 10 uA and 19 uA. Find (i) input bias current (ii)input offset current for an op amp.	2 Marks	L1	CO1
10.	Identify the key ideal properties of an operational amplifier.	2 Marks	L2	CO1

Answer the Questions.

Total Marks 80M

4.4		A ADOL 1	4.0	T 0	00.4
11	a.	An ADC is an electronic circuit that converts a continuous analog signal, like voltage from a sensor, into a digital representation. This allows digital systems to process and store information from the real world. Discuss a 3bit flash ADC also explain the working of the 3-bit flash with its advantages and disadvantages.	10 Marks	L2	CO4
	b.	A weighted resistor DAC produces an analog output, which is almost equal to the digital (binary) input by using binary weighted DAC in the inverting adder circuit. Design 4 bit R2R DAC with its advantages and disadvantage.	10 Marks	L3	CO4
		Or			
12.	a.	Digital-to-analog converter is a system that converts a digital signal into an analog signal. Identify and describe the important parameters of a DAC and their impact on performance.	10 Marks	L2	C04
	b.	The successive approximation algorithm is basically an intelligent tree search through all possible quantization levels, where each conversion step selects the next branch to follow based on the result of the previous estimate. Illustrate the working of a successive approximation with 4 bit data.	10 Marks	L3	CO4
13.	a.	Mr. Jay is working on a signal generation project and needs to produce a square wave for testing purposes. He has access to an operational amplifier (op-amp) and basic electronic components. Identify which circuit configuration should Mr. Jay use to generate a square wave using the op-amp, and how does it work?	10 Marks	L2	CO2
	b.	For the circuit shown, calculate: (i) the output voltage (ii) the voltage drop across series resistance (iii) the current through zener diode. $ \frac{R = 5 \text{ k}\Omega}{120 \text{ V}} \frac{I}{120 \text{ k}\Omega} $	10 Marks	L3	CO1
	_1	Or			
14.	a.	Mr. Ram is working on a waveform generation circuit and needs to produce a triangular wave signal. He has access to operational amplifiers and basic electronic components. How can he design a circuit using an op-amp to generate a triangular waveform effectively?	10 Marks	L2	CO2
	b.	A 6.0V stabilised power supply is required to be produced from a 12V DC power supply input source. The maximum power rating $P_{\rm Z}$ of the zener diode is 2W. Using the zener regulator circuit above calculate:	10 Marks	L3	CO1

		a). The maximum current flowing through the zener diode.			
		b). The minimum value of the series resistor, R _S			
		c). The load current I_L if a load resistor of $1k\Omega$ is connected			
		across the zener diode.			
		d). The zener current I_Z at full load.			
15.	a.	Resistors divide the supply voltage into 1/3 Vcc, 2/3 Vcc, and	10 Marks	L3	C03
15.	a.	Vcc, forming reference points for internal comparators. "Explain	10 Marks		003
		the internal functional architecture of the 555 timer IC using a			
		clear block diagram. Describe the roles of its key components,			
		and mention how the IC gets its name from the internal voltage			
		divider network."			
	b.	A Schmitt trigger is an electronic circuit that converts an analog	10 Marks	L2	CO3
		input signal to a digital output signal, often used for signal			
		conditioning and noise reduction. Discuss a Schmitt trigger for a			
		lower threshold point of -4V and an upper threshold point of 4V.			
		Let <i>VCC</i> = 15 <i>V</i>			
1.6	1	Or	40.16	1.0	000
16.	a.	The 555 Timer IC is an 8 pin mini Dual-Inline Package. Using a	10 Marks	L3	CO3
		clear and well-labeled block diagram, illustrate and describe the			
		pin configuration of the 555 timer IC along with the function of			
		each pin."			
	b.	The 555 Timer IC can be used in mono stable operation in order	10 Marks	L3	CO3
		to produce a pulse at the output. Illustrate a monostable			
		multivibrator circuit using a 555 timer IC to generate an output			
		pulse with a duration of 10 milliseconds.			
 17.		An investing amplifier given it is known for producing an output	10	1.2	CO1
1/.	a.	An inverting amplifier circuit is known for producing an output signal that is opposite in phase to the input.	10	L2	CO1
		Describe the working principle of an inverting amplifier and	Marks		
		explain how it achieves both voltage gain and phase inversion.			
		Additionally, demonstrate how to design an inverting amplifier			
		with a voltage gain of -15, specifying the resistor values used.			
	b.	The Summing Amplifier is a very flexible circuit indeed, enabling	10	L3	CO2
		us to effectively "Add" or "Sum" together several individual	Marks		
		input signals. Implement a circuit to obtain the output $Vo = -3v1$			
		-4v2 -5v3.			
1.0		Or	4.0		004
18.	a.	A non-inverting amplifier produces an output that is in phase with the input. Describe the operation of an non inverting	10	L2	CO1
		amplifier and explain how it achieves voltage gain without phase	Marks		
		inversion Also describe an non - inverting amplifier for a gain of			
		-15.			
	b.	Non - Inverting Subtracting amplifier is a type operational	10	L3	CO2
		amplifier circuit which can be used to sum signals. Explain and	Marks		
		derive the expression for the output voltage of this subtractor			
	1	opamp.	İ	il .	1