Roll No.											
----------	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOEProgram: B. Tech-EEECourse Code: EEE3002Course Name: Power System AnalysisSemester: VIMax Marks: 100Weightage: 50%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	21	21	22	12

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

$\label{lem:constraints} \textbf{Answer ALL the Questions. Each question carries 2} \textbf{2} \\ \textbf{marks.}$

 $10Q \times 2M = 20M$

1.	Identify the names of the following symbols used in one-line diagrams. a) b)	2 Marks	L1	CO1
	c)			
2.	Outline the differences between absolute form and per unit form of representations of a power system network.	2 Marks	L1	CO1
3.	For load flow solutions, which quantities are specified and to be determined for each type of bus?	2 Marks	L1	CO2
4.	Define load flow study in power systems.	2 Marks	L1	CO2
5.	List any two required input data items for carrying out load flow analysis in a power system as per the IEEE 3002 standard.	2 Marks	L1	CO2
6.	Identify the winding configuration of a three-phase transformer from the following given zero sequence network of a transformer.	2 Marks	L1	CO3

	$P \qquad Z_0 \qquad Q$			
7.	What is the doubling effect in a power system?	2 Marks	L1	CO3
8.	If the supply frequency is 60 Hz, what is the frequency of positive, negative, and zero sequence components?	2 Marks	L1	CO3
9.	Outline the conditions for the stability of a synchronous machine used in a power system.	2 Marks	L1	CO4
10.	List the types of contingencies in a power system.	2 Marks	L1	CO5

Part B

		Answer the Questions.	Total Marl	ks 80	M
11.	a.	A single phase, 10 KVA, 100 V/500 V transformer is given. Calculate V_{1b} , V_{2b} , I_{1b} , I_{2b} , S_b , Z_{1b} , and Z_{2b} . Here the suffix 'b' indicates base.	10 Marks	L3	CO1
	b.	A single-phase two-winding transformer is rated 25 kVA, 1100 V/ 440 V, 50 Hz. The equivalent leakage impedance of the transformer referred to the low voltage side is $0.06 78^{\circ} \Omega$. Using the transformer rating as values, determine the per-unit leakage impedance referred to low voltage winding and referred to high voltage winding.	10 Marks	L3	CO1
		Or		<u> </u>	<u> </u>
12.	a.	A single-phase load with an impedance of $Z_L = (1 + j \ 2) \ \Omega$ is supplied from 200 V, 10 A mains. Calculate V_b , I_b , Z_b , S_b , $V(p.u)$, $I(p.u)$, $Z(p.u)$, $R(p.u)$, $X(p.u)$, $P(p.u)$, and $Q(p.u)$. Here, the suffix 'b' indicates base, and p.u indicates per unit.	10 Marks	L3	CO1
	b.	The impedance referred to primary of a 11 kV/ 132 kV, Y/ Δ three-phase transformer is 0.2 p.u. The MVA rating of transformer is 10 MVA. Calculate actual impedance referred to primary and secondary windings.	10 Marks	L3	CO1
12	For	i the bug of a narrow greaton about in below figure describe bug	15 Montre	12	CO2
13.		<i>i</i> -th bus of a power system shown in below figure, describe bus ling equations (V_i and net injected powers $P_i \& Q_i$)	15 Marks	L2	CO2
_					_

		V_i y_{i1} V_1 y_{i2} V_2 \vdots y_{in} V_n i -th bus			
	Τ	Or		Ι_	
14.	_	n the concept, importance, and prerequisites of load flow study ower system.	15 Marks	L2	CO2
15.	Explain the short circuit currents and reactances with reference to unloaded synchronous generator on the occurrence of three phase fault.			L2	CO3
	•	Or		•	
16.	Describe all the steps involved in carrying out fault analysis.			L2	CO3
1	7.	Explain the equal area criterion for a sudden change in the mechanical input of a synchronous generator.	20 Marks	L2	CO4
		0r			
18.	a.	Describe power system stability by classifying it.	15 Marks	L2	CO4
	b. Compute the kinetic energy stored in a 50 Hz, 10 MVA, 2 pole synchronous generator having moment of inertia of 35 kg-m ² .		5 Marks	L2	CO4
19.	Describe the full AC power flow contingency analysis procedure with the help of a flowchart.			L2	CO5
		Or	1		'
20.	Explai i. Ge ii. Tr	10 Marks	L2	CO5	