Roll No.	
----------	--

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

School: SOE	Program: B. Tech-EEE		
Course Code :EEE3014	Course Name: Digital Signal Processing Systems		
Semester: IV	Max Marks:100	Weightage: 50%	

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	14	14	36	36	NA

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $10Q \times 2M = 20M$

1	The first five DFT coefficients of a sequence $x[n]$ are $X[0] = 20$, $X[1] = 5+j2$, $X[2] = 0$, $X[3] = 0.2+j0.4$, $X[4] = 0$. Determine the remaining DFT coefficients.	2 Marks	L1	C01
2	How will you perform linear convolution via circular convolution?	2 Marks	L1	CO1
3	Compare DIF and DIT FFT algorithms	2 Marks	L2	CO2
4	Calculate the multiplication reduction factor or percentage of saving , α in computing 1024 point DFT, is a radix-2 FFT algorithm	2 Marks	L1	CO2
5	Find the digital transfer function $H(z)$ by using impulse invariant method for the analog transfer function $H(s) = 1/s + 2$. Assume $T = 0.1$ sec	2 Marks	L2	CO3
6	State the properties of chebyshev (Type I)filter.	2 Marks	L1	CO3
7	Write the magnitude function of Butterworth filter. What is the effect of varying order of N on magnitude and phase response?	2 Marks	L1	CO3
8	What are the merits and demerits of FIR filters?	2 Marks	L1	CO4
9	What are the desirable and undesirable features of FIR filter?	2 Marks	L1	CO4
10	Determine the transversal structure of the system function $H(z)=1+z^{-1}-3z^{-2}-4z^{-3}$	2 Marks	L2	CO4

Part B

Answer the Questions

Total 80 Marks.

11.	a.	Given the sequences $h(n)=\{1,1,1\}$ and $x(n)=\{1,2,3,4\}$, determine	10 marks	L2	CO1
		the output sequence y(n) using the concentric circular convolution method. Also obtain the linear convolution output for			
		the same.			
b.	b.	Compute the eight point DFT of the sequence $x(n) = \{1,1,1,1,0,0,0,0,0\}$ using radix2 decimation in frequency. Follow exactly the corresponding signal flow graph and keep track of all the intermediate quantities by putting them on the diagram.	10 marks	L3	CO2
		0r	i		<u> </u>

12.	a.	Obtain the convolution of the sequences $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ and $h(n) = \{1, 1, 1\}$ using Overlap save method and compare the result with Linear convolution.	10 Marks	L3	CO1
	b.	Compute the 8 point DFT of the sequences $x(n) = n+1$; $0 \le n \le 7$ Using DIT -FFT method with necessary flow diagrams	10 Marks	L3	CO2

13.	a.	Using Impulse Invariant method find the transfer function of the	10 Marks	L2	CO3
b.	digital filter for $H(s) = \frac{10}{S^2 + 7S + 10}$ for T=0.2Sec.				
	b.	Briefly explain the general architecture of Digital Signal Processor.	10 Marks	L2	CO4

0r

14.	a.	Realise the given difference equation $y(n) + \frac{3}{8}y(n-1)$	10 Marks	L3	CO3
		$-\frac{3}{32}y(n-2) - \frac{1}{64}y(n-3) = x(n) + 3x(n-1) + 2x(n-2)$			
		Using Direct form I and Direct form II methods.			
	b.	Obtain direct form and cascade form realizations for the transfer function of the system given by	10 Marks	L3	CO4
		$H(z) = (1 - 2z^{-1} - z^{-2}) (1 + z^{-1} - z^{-2})$			

15.	a.	Design a digital low pass filter using Bilinear transformation to satisfy the following characteristics (i) Monotonic pass band and stop band; (ii) -3dB cutoff at 0.5π rad (iii) -15 dB at 0.7π rad	20 Marks	L4	CO3

0r

16.	a.	Design and analyse a Digital Butterworth filter satisfying the constraints	20 Marks	L4	CO3
		$0.8 \leq H(\omega) \leq 1 \; ; \qquad 0 \leq \omega \leq 0.2\pi \\ H(\omega) \leq 0.2 \; ; \qquad 0.6\pi \leq \omega \leq \pi \\ \text{using impulse invariance method.}$			

17.	a.	Design a low pass filter using rectangular window by taking 9 samples of w(n) and cut off frequency of 1.2 rad/sec and realise	L3	CO4
		the same using suitable structure.		

0r

18.	a.	Analyse and design the filter using suitable structure to pass the frequency in the range of 1 to 2 rad/sec using Hanning window. Given: $H_d(\omega) = e^{-j2\omega}$; $\omega c1 \le \omega \le \omega c2$ 0; Otherwise	20 Marks	L4	CO4	
-----	----	--	----------	----	------------	--