Roll No.						

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY 2025

Date: 31-05-2025 **Time:** 09:30 am – 12:30 pm

School: SOEProgram: B.Tech. (EEE)Course Code: EEE3025Course Name: Power System Operation and ControlSemester: VIMax Marks: 100Weightage: 50%

CO - Levels CO1		CO2	CO3	CO4	CO5	
Marks	24	26	24	26	-	

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

 $100 \times 2M = 20M$

1.	State the functions of the energy control center?	2 Marks	L1	CO1
2.	Name the constraints in the unit commitment problem?	2 Marks	L1	CO1
3.	Describe the priority list method solution for unit commitment?	2 Marks	L1	CO2
4.	Outline the function of governor control in power system operation?	2 Marks	L1	CO2
5.	Define: i) Economic load dispatch and ii) frequency bias.	2 Marks	L1	CO2
6.	State the governor's dead band?	2 Marks	L1	CO3
7.	Mention the different issues to be addressed during the implementation of AGC in the power system?	2 Marks	L1	CO3
8.	Identify the significance of linear programming in economic load dispatch?	2 Marks	L1	CO4
9.	Outline the importance of composite generation production cost in load dispatch operation?	2 Marks	L1	CO4
10.	Tell how a take-or-pay fuel supply contract works between the two power customers.	2 Marks	L1	CO4

Part B

		Answer the Questions.	Total Mark	s 801	M
11.	a.	Describe the Backward Dynamic Programming approach for the	10 Marks	L2	CO1
		unit commitment problem with a neat diagram.			
	b.	Summarize the operating states of the power system with a block	10 Marks	L2	CO1
		diagram.			
		0r			
12.	a.	Describe the operation of the Energy Control Centre in the energy	10 Marks	L2	CO1
		management system with a block diagram.			
	b.	Explain the Forward Dynamic Programming approach for the unit	10 Marks	L2	CO1
		commitment problem with a neat diagram.			
13.	a.	Describe the operation of the conventional fly ball speed governor	10 Marks	L2	CO2
13.	a.	system for steam flow?			
	b.	Summarize the load frequency and excitation control of a turbo	10 Marks	L2	CO2
		generator with an appropriate diagram.			
		0r			1
14.	a.	Explain the automatic load frequency control for the single area	10 Marks	L2	CO2
		system with a neat block diagram.			
	b.	Summarize the basic generator control loop that has both	10 Marks	L2	CO2
		automatic voltage regulator and load frequency control with a neat			
		block diagram.			
4 =			10 Marks	1.0	602
15 .	a.	Explain the state space analysis of an interconnected two-area	10 Marks	L2	CO3
	1_	system with a neat block diagram.	10 Marks	L2	CO3
	b.	Summarize the challenges and issues during the implementation of	10 Marks	LZ	LU3
		AGC in the power system.			
1.0	1 _	Or	10 Marks	L2	C03
16.	a.	Explain the state space model of a single-area ALFC system with a block diagram.	10 Marks	LZ	COS
	h	Describe the static response of a two-area system for the	10 Marks	L2	CO3
	b.	uncontrolled case with a neat block diagram.	10 Marks	LL	COS
		uncontrolled case with a fleat block diagram.			
17.	a.	Analyze power system fuel scheduling using the Linear Programming	10 Marks	L4	CO4
-/-		method with a neat flow chart.			
	b.	Examine the system when there is a Take-or-Pay Fuel Supply Contract	10 Marks	L4	CO4
		between the two systems for the power system operation.			
	1	Or	<u> </u>		
18.	a.	Debate the composite generation production cost function to address	10 Marks	L4	CO4

the economic load dispatch with appropriate assumptions.

Optimization Technique in a power system with a neat flowchart.

b.

Analyze the economic load dispatch using the Gradient Search 10 Marks

CO4