|--|

PRESIDENCY UNIVERSITY

BENGALURU

End - Term Examinations - MAY/ JUNE 2025

Date: 03-06-2025 **Time:** 09:30 am – 12:30 pm

School: SOE	Program: B.Tech			
Course Code : EEE3048	Course Name: Power Electronics Applications for Electrical Vehicles			
Semester: VI	Max Marks: 100	Weightage: 50%		

CO - Levels	CO1	CO2	СО3	CO4	CO5
Marks	14	24	14	24	24

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

10Q x 2M=20M

1.	List the main power electronic components used in electric vehicles.	2 Marks	L1	CO1
2.	Explain why lithium-ion batteries are widely used in EVs.	2 Marks	L2	CO1
3.	State the role of lateral dynamics in maintaining vehicle stability during cornering and high-speed maneuvers.	2 Marks	L1	CO2
4.	Summarize the benefits of a series-parallel (power-split) hybrid system	2 Marks	L2	CO2
5.	List the major losses associated with BJTs and MOSFETs.	2 Marks	L1	CO3
6.	List the types of switched-mode power converters.	2 Marks	L1	CO3
7.	List reasons why dynamic modeling is required in system analysis.	2 Marks	L1	CO4
8.	List the types of control techniques used in EV inverters.	2 Marks	L1	CO4
9.	List the key characteristics of a battery.	2 Marks	L1	CO5
10.	Explain the basic concept of electrochemistry.	2 Marks	L2	CO5

Part B

Answer the Questions.

Total Marks 80M

		Thiswer the Questions.	I O tai I I ai i		·	
11.	a.	Describe how EV body design differs from ICE vehicle design.	5 Marks	L2	CO1	
	b.	Analyze the impact of EVs on reducing India's oil import bill.	5 Marks	L4	C01	
Or						
12.	a.	Differentiate between challenges faced in rural vs. urban EV	5 Marks	L2	C01	
		adoption.				
	b.	Compare ICE vehicles and EVs in terms of running cost per	5 Marks	L4	CO1	
		kilometer.				
40			40.14	1.0	000	
13.	a.	Explain the advantages of using a Hybrid Energy Storage	10 Marks	L2	CO2	
	_	System (HESS) over a single energy storage system in EVs.				
	b.	An HEV operates in electric mode for 30 minutes using a 50 kW	10 Marks	L3	CO2	
		motor powered by a 300V battery. The battery has an efficiency				
		of 95%. Determine the required battery capacity in kWh and				
		the current drawn from the battery.				
		Or			_	
14.	a.	Explain the different possible Hybrid Electric Vehicle (HEV)	10 Marks	L2	CO2	
		configurations and how they integrate various energy sources.				
	b.	A hybrid electric vehicle (HEV) needs an electric motor to	10 Marks	L3	CO2	
		provide a peak torque of 150 Nm at a maximum speed of 5000				
		rpm. The motor efficiency is 90%. Determine the required				
		power rating (in kW) for the motor.				
15.	a.	A buck converter uses a MOSFET as the switching device. Given	5 Marks	L4	CO3	
		the following parameters, calculate: (1) DC Efficiency (2) AC				
		Efficiency (3) Total Efficiency of the buck converter. Given				
		Data: input voltage 24 V, Output voltage 12V, Output current 5				
		A, MOSFET on-resistance 0.05 ohm, Inductor resistance 0.1				
		ohm, switching frequency 100 k Hz, MOSFET Rise Time 50 ns,				
		MOSFET fall Time 75 ns.				
	b.	Describe the power transfer process in a forward converter.	5 Marks	L1	CO3	
		Or				
16.	a.	Describe the difference between linear and switched-mode	5 Marks	L1	CO3	
]	u.	converters.	J. Marks		303	
	b.	Analyze why MOSFETs have lower switching losses than BJTs.	5 Marks	L4	CO3	
	D.	Allaryze why Most Et's have lower switching losses than by is.	J Mai KS	L4	603	
17.	a.	Differentiate between rotor construction in BLDC and AC	10 Marks	L2	CO4	
	".	induction motors.	20 1441110			
	b.	Describe the switching sequence for a single phase full-bridge	10 Marks	L2	CO4	
	D.		10 Mai KS	LL	604	
		inverter 50Hz AC output.				
10	l	Or	10 1		60.4	
18.	a.	Differentiate between full-bridge and half-bridge inverter	10 Marks	L2	CO4	
		topologies.	I	i		

	b.	Describe the speed control function of the BLDC motor through a block diagram.	10 Marks	L2	CO4		
19.	a.	Explain how the Resistive Thevenin model represents a battery.	10 Marks	L2	CO5		
17.	b.	Explain the challenges involved in managing large battery	10 Marks	L2	CO5		
	.	packs.	10 1101110		dob		
	Or						
20.	a.	Explain the impact of high discharge rates on terminal voltage.	10 Marks	L2	CO5		
	b.	Describe an accurate electrical battery model.	10 Marks	L2	CO5		